Apache Hudi在Hopworks机器学习的应用】的更多相关文章

Hopsworks特征存储库统一了在线和批处理应用程序的特征访问而屏蔽了双数据库系统的复杂性.我们构建了一个可靠且高性能的服务,以将特征物化到在线特征存储库,不仅仅保证低延迟访问,而且还保证在服务时间可以访问最新鲜的特征值. 企业机器学习模型为指导产品用户交互提供了价值价值.通常这些 ML 模型应用于整个实体数据库,例如由唯一主键标识用户.离线应用程序的一个示例是预测客户终身价值(Customer Lifetime Value),其中可以定期(每晚.每周)分批预测,然后用于选择营销活动的目标受众…
感谢 Apache Hudi contributor:王祥虎 翻译&供稿. 欢迎关注微信公众号:ApacheHudi 本文将介绍Apache Hudi的基本概念.设计以及总体基础架构. 1.简介 Apache Hudi(简称:Hudi)使得您能在hadoop兼容的存储之上存储大量数据,同时它还提供两种原语,使得除了经典的批处理之外,还可以在数据湖上进行流处理.这两种原语分别是: Update/Delete记录:Hudi使用细粒度的文件/记录级别索引来支持Update/Delete记录,同时还提供…
马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apache顶级项目(TLP).在投票表决Hudi毕业时,Hudi总共获得了19票binding(其中包括ASF联合创始人Jim Jagielski的一票),21票non-binding. Apache Hudi(Hadoop Upserts Delete and Incremental)数据湖技术可在Ap…
一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主要从事数据方面的工作,包括摄取标准化,数据湖原语等. 什么是数据湖?数据湖是一个集中式的存储,允许以任意规模存储结构化和非结构化数据.你可以存储原始数据,而不需要先转化为结构化的数据,基于数据湖之上可以运行多种类型的分析,如dashboard.大数据处理的可视化.实时分析.机器学习等. 接着看看对于构建PB…
T3出行的杨华和张永旭描述了他们数据湖架构的发展.该架构使用了众多开源技术,包括Apache Hudi和Alluxio.在本文中,您将看到我们如何使用Hudi和Alluxio将数据摄取时间缩短一半.此外,数据分析人员如何使用Presto.Hudi和Alluxio让查询速度提高了10倍.我们基于数据编排为数据管道的多个阶段(包括提取和分析)构建了数据湖. 1.T3出行数据湖总览 T3出行当前还处于业务扩张期,在构建数据湖之前不同的业务线,会选择不同的存储系统.传输工具以及处理框架,从而出现了严重的…
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发. 本期SOFTWARE DAILY我们有幸采访到了Apache Hudi项目VP Vinoth Chandar.Vinoth是Uber Hudi项目的创建者,他继续在Apache Software Foundation领导Hudi的发展.在…
来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的实践. 在推荐系统中,我们在两个场景下使用数据湖 我们使用BigTable作为整个系统近线处理的数据存储,这是一个公司自研的组件TBase,提供了BigTable的语义和搜索推荐广告场景下一些需求的抽象,并屏蔽底层存储的差异.为了更好的理解,这里可以把它直接看做一个HBase.在这过程中为了能够服务…
认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍,它们需要访问数据仓库之外的大量信息. 开放的Lakehouse 云计算发展引发了计算与存储分离,这利用了成本优势并能够灵活地存储来自多个来源的数据. 所有这一切都催生了开放Lakehouse的新数据平台架构.现在通过使用 Presto 和 Apache Hudi 等开源和开放格式技术解决了传统云数据…
Apache Hudi Apache Hudi 在基于 HDFS/S3 数据存储之上,提供了两种流原语: 插入更新 增量拉取 一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive中,对于update的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则hive.presto.hbase等也未提供原生方式,而是需要根据时间戳进行过滤分析. 在此需求下,Hudi可以提供这两种…
将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分析数据. 尽管这些工具功能强大,但是在处理需要进行增量数据处理以及记录级别插入,更新和删除场景时,仍然非常具有挑战. 与客户交谈时,我们发现有些场景需要处理对单条记录的增量更新,例如: 遵守数据隐私法规,在该法规中,用户选择忘记或更改应用程序对数据使用方式的协议. 使用流数据,当你必须要处理特定的数…
​Apache Hudi是一个开源的数据管理框架,其通过提供记录级别的insert, update, upsert和delete能力来简化增量数据处理和数据管道开发.Upsert指的是将记录插入到现有数据集中(如果它们不存在)或进行更新(如果它们存在的话)的功能.通过高效管理Amazon S3中数据的布局方式,Hudi允许近乎实时地提取和更新数据.Hudi维护在数据集上所执行的操作的元数据,以确保这些操作的原子性和一致性. Hudi可与Apache Spark.Apache Hive和Prest…
这一节我们将介绍使用DeltaStreamer工具从外部源甚至其他Hudi数据集摄取新更改的方法, 以及通过使用Hudi数据源的upserts加快大型Spark作业的方法. 对于此类数据集,我们可以使用各种查询引擎查询它们. 写操作 在此之前,了解Hudi数据源及delta streamer工具提供的三种不同的写操作以及如何最佳利用它们可能会有所帮助. 这些操作可以在针对数据集发出的每个提交/增量提交中进行选择/更改. UPSERT(插入更新) :这是默认操作,在该操作中,通过查找索引,首先将输…
1.如何写入Hudi数据集 通常,你会从源获取部分更新/插入,然后对Hudi数据集执行写入操作.如果从其他标准来源(如Kafka或tailf DFS)中提取数据,那么DeltaStreamer将会非常有用,其提供了一种简单的自我管理解决方案,可将数据写入Hudi.你还可以自己编写代码,使用Spark数据源API从自定义源获取数据,并使用Hudi数据源写入Hudi. 2. 如何部署Hudi作业 写入Hudi的好处是它可以像在YARN/Mesos甚至是K8S群集上运行的任何其他Spark作业一样运行…
历经大约3个月时间,Apache Hudi 社区终于发布了0.5.1版本,这是Apache Hudi发布的第二个Apache版本,该版本中一些关键点如下 版本升级 将Spark版本从2.1.0升级到2.4.4 将Avro版本从1.7.7升级到1.8.2 将Parquet版本从1.8.1升级到1.10.1 将Kafka版本从0.8.2.1升级到2.0.0,这是由于将spark-streaming-kafka artifact从0.8_2.11升级到0.10_2.11/2.12间接升级 重要:Hud…
千呼万唤始出来,Meetup 直播终于来啦- 本次线上 Meetup 由 Apache Kylin 与 Apache Hudi 社区联合举办,将于 3 月 14 日晚进行直播,邀请到来自丁香园.腾讯.柯林布瑞以及 Kyligence 等公司的技术专家,为大家呈现 Kylin 与「由 Uber 开源的数据湖项目」Hudi 的精彩应用案例与实践.感兴趣的小伙伴可以直接拉到文末报名! 活动议程 19:00-19:05   开场 19:05-19:35   Talk 1:<丁香园日志量十倍增长引发的运维…
1. 引入 云上对象存储的廉价让不少公司将其作为主要的存储方案,而Hudi作为数据湖解决方案,支持对象存储也是必不可少.之前AWS EMR已经内置集成Hudi,也意味着可以在S3上无缝使用Hudi.当然国内用户可能更多使用阿里云OSS作为云上存储方案,那么如果用户想基于OSS构建数据湖,那么Hudi是否支持呢?随着Hudi社区主分支已经合并了支持OSS的PR,现在只需要基于master分支build版本即可,或者等待下一个版本释出便可直接使用,经过简单的配置便可将数据写入OSS. 2. 配置 2…
是的,最近国内云服务提供商腾讯云在其EMR-V2.2.0版本中优先集成了Hudi 0.5.1版本作为其云上的数据湖解决方案对外提供服务 Apache Hudi 在 HDFS 的数据集上提供了插入更新和增量拉取的流原语. 一般来说,我们会将大量数据存储到 HDFS,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive 中,对于 update 的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则 hive.presto.…
1. 准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python3) spark-2.4.4-bin-hadoop2.7/bin/pyspark \ --packages org.apache.hudi:hudi-spark-bundle_2.11:0.5.1-incubating,org.apache.spark:spark-avro_2.11:2.4.4 \…
1. 可用性 在Hudi最新master分支,由Hudi活跃贡献者Raymond Xu贡献了DataDog监控Hudi应用指标,该功能将在0.6.0 版本发布,也感谢Raymond的投稿. 2. 简介 Datadog是一个流行的监控服务.在即将发布的Apache Hudi 0.6.0版本中,除已有的报告者类型(Graphite和JMX)之外,我们将引入通过Datadog HTTP API报告Hudi指标的功能. 3. 配置 类似于其他支持的报告者,启用Datadog报告者需要以下两个属性. ho…
1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi,以低延迟和高效率为关键业务数据管道赋能.一年后,我们开源了该解决方案,以使得其他有需要的组织也可以利用Hudi的优势.接着在2019年,我们履行承诺,进一步将其捐赠给了Apache Software Foundation,差不多一年半之后,Apache Hudi毕业成为Apache Softwar…
1. 引入 大多数现代数据湖都是基于某种分布式文件系统(DFS),如HDFS或基于云的存储,如AWS S3构建的.遵循的基本原则之一是文件的"一次写入多次读取"访问模型.这对于处理海量数据非常有用,如数百GB到TB的数据. 但是在构建分析数据湖时,更新数据并不罕见.根据不同场景,这些更新频率可能是每小时一次,甚至可能是每天或每周一次.另外可能还需要在最新视图.包含所有更新的历史视图甚至仅是最新增量视图上运行分析. 通常这会导致使用用于流和批处理的多个系统,前者处理增量数据,而后者处理历…
1. 下载连接 源代码下载:Apache Hudi 0.5.3 Source Release (asc, sha512) 0.5.3版本相关jar包地址:https://repository.apache.org/#nexus-search;quick~hudi 2. 迁移指南 这是一个bugfix版本,从0.5.2升级时不需要任何特殊的迁移步骤.如果要从早期版本"X"升级,请阅读"X"和0.5.3之间的每个后续版本的迁移指南. 0.5.3是Hudi毕业后的第一个版…
1. 引入 开源Apache Hudi项目为Uber等大型组织提供流处理能力,每天可处理数据湖上的数十亿条记录. 随着世界各地的组织采用该技术,Apache开源数据湖项目已经日渐成熟. Apache Hudi(Hadoop Upserts Deletes and Incrementals)是一个数据湖项目,可在与Apache Hadoop兼容的云存储系统(包括Amazon S3.Aliyun OSS)上进行流数据处理. 该项目最初于2016年在Uber开发,于2017年成为开源,并于2019年1…
1. 摘要 随着Apache Hudi变得越来越流行,一个挑战就是用户如何将存量的历史表迁移到Apache Hudi,Apache Hudi维护了记录级别的元数据以便提供upserts和增量拉取的核心能力.为利用Hudi的upsert和增量拉取能力,用户需要重写整个数据集让其成为Hudi表.此RFC提供一个无需重写整张表的高效迁移机制. 2. 背景 为了更好的了解此RFC,读者需要了解一些Hudi基础知识 2.1 记录级别元数据 上图展示了Hudi中每条记录的组织结构,每条记录有5个Hudi元数…
原文链接:https://mp.weixin.qq.com/s/sT2-KK23tvPY2oziEH11Kw 1. 什么是Alluxio Alluxio为数据驱动型应用和存储系统构建了桥梁, 将数据从存储层移动到距离数据驱动型应用更近的位置从而能够更容易被访问.这还使得应用程序能够通过一个公共接口连接到许多存储系统.Alluxio内存至上的层次化架构使得数据的访问速度能比现有方案快几个数量级. 对于用户应用程序和计算框架,Alluxio提供了快速存储,促进了作业之间的数据共享和局部性.当数据位于…
1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入). Hudi处理数据插入和更新,不会创建太多的小文件(小文件会导致查询端性能降低),Apache Hudi自动管理及合并小文件,让其保持指定大小,这避免了自建解决方案来监控和重写小文件为大文件. Hudi数据集在如下场景下非常适用 使用GDPR和CCPA法规来删除用户个人信息或修改个人信息用途. 处…
Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集. 1. 准备-Spark环境,S3 Bucket 需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell: $ export…
1. 引入 Hudi 0.6.0版本之前只支持将Hudi表同步到Hive或者兼容Hive的MetaStore中,对于云上其他使用与Hive不同SQL语法MetaStore则无法支持,为解决这个问题,近期社区对原先的同步模块hudi-hive-sync进行了抽象改造,以支持将Hudi表同步到其他类型MetaStore中,如阿里云的数据湖分析DLA(https://www.aliyun.com/product/datalakeanalytics中. 2. 抽象 将Hudi表同步至Hive MetaS…
1. 引入 Apache Hudi支持多种分区方式数据集,如多级分区.单分区.时间日期分区.无分区数据集等,用户可根据实际需求选择合适的分区方式,下面来详细了解Hudi如何配置何种类型分区. 2. 分区处理 为说明Hudi对不同分区类型的处理,假定写入Hudi的Schema如下 { "type" : "record", "name" : "HudiSchemaDemo", "namespace" : &qu…