【笔记】SVM思想解决回归问题】的更多相关文章

使用svm思想解决回归问题 使用svm思想解决是如何解决回归问题,其中回归问题的本质就是找一条线,能够最好的拟合数据点 怎么定义拟合就是回归算法的关键,线性回归算法就是让预测的直线的MSE的值最小,对于SVM来说,拟合的定义是指定一个margin值,在这个margin范围里面,包含的数据点越多越好,包含的越多就代表这个范围能比较好的表达样本数据点,这种情况下取中间的直线作为真正的回归结果,用其来预测其他点的相应的值 在训练的时候是要对margin的范围进行一个指定,这就要引入一个新的超参数,即上…
一.SVM 思想在解决回归问题上的体现 回归问题的本质:找到一条直线或者曲线,最大程度的拟合数据点: 怎么定义拟合,是不同回归算法的关键差异: 线性回归定义拟合方式:让所有数据点到直线的 MSE 的值最小: SVM 算法定义拟合的方式:在距离 Margin 的区域内,尽量多的包含样本点: SVM 的思路解决回归问题: 在 Margin 区域内的样本点越多,则 Margin 区域越能够较好的表达样本数据点,此时,取 Margin 区域内中间的那条直线作为最终的模型:用该模型预测相应的样本点的 y…
使用sklearn解决回归问题 依然是加载数据 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets boston = datasets.load_boston() X = boston.data y = boston.target X = X[y < 50.0] y = y[y < 50.0] 通过shape看X矩阵中的结构 X.shape 然后对数据集进行切分,由于sklearn中的随…
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libsvm函数库解决SVM模型的分类与回归问题. 说明:libsvm是实现svm的便捷开源工具,应用广泛,由国立台湾大学Chih-Chung Chang和Chih-Jen Lin编写,可以实现基于SVM的分类和回归. 1.分类 在Matlab下下载测试数据heart_sacle运行程序: load hea…
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象. 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes) 所以,接下来我的笔记只记录一些我自己的总结和听课当时的困惑,如果有能够帮我解答的朋友也请多多指教. 1.回归问题的应用 回归问题因为主要…
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet as mx from mxnet import gluon from mxnet import ndarray as nd from mxnet import autograd def transform(data, label): return data.astype('float32')/255,…
SVM之问题形式化 SVM之对偶问题 SVM之核函数 >>>SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射到高维空间以望使其线性可分的方法,一定程度上解决了线性不可分问题,但并不彻底. 现在,换个思路,对于线性不可分问题不再千方百计的变换数据使其线性可分,对于有些数据,找到合适的变换可能是相当困难的.我们允许数据线性不可分,允许得到的分类器对一些样本而言不“完美”,但分类器得为自己的不“完美”付出代价,它要受到惩…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可…
SVM是一种二类分类模型,有监督的统计学习方法,能够最小化经验误差和最大化几何边缘,被称为最大间隔分类器,可用于分类和回归分析.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题.支持向量机的学习算法是求解凸二次规划的最优化算法. 一.基本原理 SVM是一个机器学习的过程,在高维空间中寻找一个分类超平面,将不同类别的数据样本点分开,使不同类别的点之间的间隔最大,该分类超平面即为最大间隔超平面,对应的分类器称为最大间隔分类器,对于二分类…