1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 Description  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0  …
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可…
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 <…
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l时,可以发现 如果l与栈顶直线l'的交点p在 l'入栈前与栈顶直线 的交点p'的左侧,那么l会覆盖l'(直接用与第一条直线的交点好像也可以?).弹出l'加入l. 如果p在p'右侧,则保留栈顶直线,并将l入栈:如果重合,那么后加入的直线应该会覆盖l',弹出l'加入l. 在斜率符号改变时结果也是一样的.…
题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会被覆盖. 假设栈顶直线为st[top], 新加入的直线为tmp, 那么如果tmp和st[top-1]这条直线的交点在st[top]和st[top-1]交点的左边, 那么显然st[top]这条直线会被覆盖. #include <iostream> #include <vector> #i…
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; inline void read(int &x){ x=0;char ch;boo…
其实并不算标准半平面交?但是思路差不多 先按照斜率排序,然后用栈维护凸壳,每遇到重斜率或a[i],s[top-1]交点的x轴在s[top],s[top-1]交点左侧,则说明s[top]被a[i],s[top-1]覆盖,弹栈即可: #include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int N=50005; const double eps=1e-8; int…
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namesp…
用了trinkle的方法,半平面交转凸包. 写了一发,既没有精度误差,也很好写. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
http://www.lydsy.com/JudgeOnline/problem.php?id=1007 一开始我贪心的写了下,当然全wa了.. 这题看了题解感觉很简单. 首先什么情况才能看到呢? wobuzhidao. 我画图才看出门道的.. 当前直线与相对他斜率次大和次次大的2条直线时,如果与次大的(或者次次大)的交点在次大与次次大的交点左边,那么次大的直线一定被覆盖掉了! 画图自己看!(其实也就是这三个点形成一个凸包,然后上凸包的边所在直线一定看得到,下凸包一定被覆盖!) 所以我们用一个栈…
题目 传送门:QWQ 分析 在下面维护一个凸壳 好久没写博客了...... 代码 #include <bits/stdc++.h> using namespace std; ; ,INF=1e10; struct Line{ double a,b;int n; }l[maxn]; Line st[maxn];; bool cmp(Line a,Line b){ if(fabs(a.a-b.a)<eps)return a.b<b.b; return a.a<b.a; } boo…
先对a排序,a相等的话就对b排序: 维护一个栈,每次取栈的头两个,和当前的直线相比较: 如果当前的直线把头第一个屏蔽,就将他出栈,一直到不能屏蔽为止: 代码: #include<cstdio> #include<cstring> #include<algorithm> #define maxn 500005 using namespace std; int st[maxn],top; int num[maxn]; struct line { int a,b; int i…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5932  Solved: 2254[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入A…
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有其他直线,$1\le n 5\cdot 10^4$. 想法:神题qwq.看见网上的做法突然有一种学计算几何的冲动,直到看见一篇大神的blog说用单调栈做?这题困难其实就困难在如何规定两条直线之间本不存在的单调性.用单调栈就是讲即将进栈元素不断和栈顶比较,然后弹来弹去最后剩下的都是可见的.不容易难想到:将直…
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1007 [题意] [题解] 这个人讲得很好 http://blog.csdn.net/outer_form/article/details/50623551 可以先看一下; 看完之后再看下面的; 根据上面的分析; 可以知道最后所求的线段围成的是一个凹的多边形; 可知相邻的两条边, 它们的交点的横坐标必然是递增的; 如下图; 在把直线按照斜率递增排序之后; 假设第i条直线是可见的; 那么…
1007 思路: 维护一个下凸壳: 用单调栈来维护这玩意儿: 先将斜率排序: 然后判断栈顶元素和当前元素的交点x是否小于栈顶元素和栈顶上一个元素的交点x: 注意: 人神共愤的精度问题和输出空格问题: 来,上代码: #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #d…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的交点的位置关系即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,top,ans[max…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1007 按斜率排序,去掉斜率相同时,截距较小的直线(即只保留该斜率下截距最大的直线).若当前直线与栈顶直线的交点的x坐标<=栈顶直线与栈顶第二条直线的交点的x左边,则pop,直到前者大于后者为止,因为若小于等于,那么栈顶这条直线一定被覆盖. #include <cstdio> #include <algorithm> const int maxn = 50005; int…
Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,…
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左…
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 输入 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi 输出 从小到大输出可见直线的编号,两两中间…
题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 题解: 一道很好的思维题.1.简单手画一下,能被看到的直线应该是所有直线一起围成的大凸包.2.由于是凸包,我们考虑将所有直线按…
题目链接 把线段以斜率为第一关键字,截距为第二关键字升序排序. 然后维护一个单调栈,保证栈中两两线段的交点的\(x\)坐标单调上升就行了.栈中的线段即为所求. #include <cstdio> #include <algorithm> using namespace std; const int MAXN = 50010; struct Seg{ double k, b; int id; int operator < (const Seg A) const{ return…
思路:首先按斜率排序,如果斜率相同就取截距最大的,显然截距小的会被覆盖而对答案没有贡献,然后考虑斜率不同的如何统计答案,可以用一个单调栈维护,当前新插入的直线显然斜率是要比当前栈顶斜率要大的,然后如果新插入的直线l[i]与stack[top]的交点在stack[top]与stack[top-1]的交点的右边,那么就不需要退栈直接加进来就好了,否则就要退栈直到条件成立. #include<iostream> #include<cstdio> #include<cstring&g…