bzoj 1492】的更多相关文章

Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492   [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B=Ratei,也可以卖掉OPi%的A券和B券,每天AB价值为Ai和Bi. 开始有S元,n天后手中不能有AB券,问最大获益. [思路] 设f[i]表示前i天的最大收益. 第j天将手中的钱全部换掉,可以换成的B券数目Y(j):f[j]*(1/(Rate[j]*A[j]+B[j])) 第j天将手中的钱全部换…
Description Input 第一行两个正整数\(N,S\),分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来\(N\)行,第\(K\)行三个实数\(A_{K},B_{K},Rate_{K}\),意义如题目中所述. Output 只有一个实数\(MaxProfit\),表示第\(N\)天的操作结束时能够获得的最大的金钱数目.答案保留$3¥位小数. Sample Input 3 100 1 1 1 1 2 2 2 2 3 Sample Output 225.000 HINT 测试数据…
http://www.lydsy.com/JudgeOnline/problem.php?id=1492 思路: 问题转变为维护一个凸包,每次转移都找凸包上的点,并更新凸壳 可以用splay维护,或者说,可以用cdq分治去维护,左半边构成的凸壳对右半边答案的影响~ #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> ;…
dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡树维护上凸壳, 询问时就在凸壳上二分...时间复杂度O(NlogN) ----------------------------------------------------------------------------------------------- #include<cmath> #i…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题目给了良心的提示,转移就比较明显了: 令 $X_j,Y_j$ 分别表示用第j天的最大收益去全部买票,得到的A,B票的数量, 那么转移如下: $DP[i]=min(X_jA_i+Y_jB_i)\quad(j<i)$ 第j天买的票在第i天全部卖出 $DP[i]=min(DP[i],DP[i-1])$ 不…
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择什么都不干,\(f_i=f_{i-1}\):也可以从之前的某一天\(j\)花\(f_j\)的钱买金券,在第\(i\)天全卖掉.用第\(j\)天的信息算一下买了多少\(A,B\),就可以得到第\(i\)天卖了多少钱. 所以有\(f_i=\max\{f_{i-1},\ A_i\frac{f_jk_j}{…
这道题真好... 首先,感觉像DP,但是如果按照原题意,有无数个状态,每个状态又有无数个转移. 然后思考,我们每次买一部分和卖一部分的原因是什么,如果没有那个比例(就是rate=1恒成立),那么很容易贪心证明每次必须买完或卖完,但加了比例后就没那么好证明了,感觉一下吧. 然后就可以写DP方程了(dp[i]表示通过前i天的交易,到达第i天时,身上最多的钱) (内层的max前面那项很好解决主要是后面的那个转移,所以后面就之考虑后面那个) 这个转移中有i的信息与j的信息相乘的项,所以考虑是否可用斜率优…
这是道CDQ分治的例题: $O(n^2)$的DP: f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1]) Ans←SFor i ← 2 to n For j ←1 to i-1 x ← f [j] * A[i] + f [j] / Rate[j] * B[i] If x> Ans Then Ans ← x End For f [i] ← Ans* Rate[i] / (A[i] * Rate[i] + B[i])End ForPrint(Ans) 决策i是通过1-…
Description Input 第一行两个正整数N.S,分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来N 行,第K 行三个实数AK.BK.RateK,意义如题目中所述 Output 只有一个实数MaxProfit,表示第N 天的操作结束时能够获得的最大的金钱 数目.答案保留3 位小数. Sample Input 3 100 1 1 1 1 2 2 2 2 3 Sample Output 225.000 HINT 测试数据设计使得精度误差不会超过10-7. 对于40%的测试数据,满足…
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提…
传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[i]$表示第$i$天最多能得到的钱在这一天可以换成多少$A$卷 枚举使用哪一天留下的卷,按这一天的汇率换成钱来更新最大钱数 再用这个钱数更新$f[i]$ 这样是$O(n^2)$的 #include <iostream> #include <cstdio> #include <al…
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法.比例交易法分为两个方面:(a)卖出金券:顾客提供一个…
传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操作: 卖出:将 $ %OP $ 的A券和 $ %OP $ 的B券兑换成人民币,其中 $ OP $ 为 $ [0,100] $ 之间的任意实数 买入:支付 $ IP $ 元,买入A.B券的总价值为 $ IP $ 元,且买入A.B券的数量之比为 $ Rate[i] $ 人民币和金券的数量可以为一个实数.…
先说一下斜率优化:这是一种经典的dp优化,是OI中利用数形结合的思想解决问题的典范,通常用于优化dp,有时候其他的一些决策优化也会用到,看待他的角度一般有两种,但均将决策看为二维坐标系上的点,并转化为维护凸壳,一种根据两点的斜率与某一常数的大小关系推断二者的优劣,一种将转移方程化为相关直线方程,通过取得最大(小)截距来求最优解.关于其实现方法上,当点的x坐标单调时,可依据比较常数是否单调选择单调队列或单调栈,而当其x坐标不单调时常常使用CDQ分治或平衡树来实现. 千万别用替罪羊来写动态凸壳!!!…
Description 最初你有 S 块钱, 有 N 天给你来兑换货币, 求最大获利. 一共只有两种货币 A , B . 对于每一天, 给定 3 个系数 A[i], B[i], Rate[i] A[i] 表示当天 A 货币的单位价值, B[i] 表示当前 B 货币的单位价值. 第\(i\)天你可以进行以下两种操作: (可以执行多次) ① 将 OP% 的 A 货币和 OP% 的 B 货币卖出. ② 按照 A : B = Rate[i] 的比例, 用一部分的钱买入货币. \(n \le 100000…
这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个log. 这题数据很水,同时注意精度. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<ctime&…
参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到最大收益的,那么应该用所有钱去买,相对的如果在某天卖出能得到最大收益,那么应该全部卖出 方便起见,设\( x[j]=f[j]/(a[j]*rate[j]+b[j])*rate[j] \)表示第j天最多可以拥有的A货币的数量,y[j]=f[j]/(a[j]*rate[j]+b[j])表示第j天最多可以…
题意:链接 方法:cdq分治或平衡树维护凸包 解析: 这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘.del点的时候不要脑抽d错.有想写平衡树的去看140142或者留言我. 首先这道题能推出个表达式 f[i]代表第i天最大收益. xx[i]表示将第i天的钱都买A的数量 yy[i]表示将第i天的钱都买B的数量 所以f[i]=max(f[i−1],p[i].a∗xx[j]+p[i].b∗yy[j])j<i 所以我们要维护这个n^2的递推式 又知道f[i]是由小于…
题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易得到方程 $dp[i]=max(dp[i-1],a[i]*\frac{dp[j]*rate[j]}{rate[j]*a[j]+b[j]}+b[i]*\frac{dp[j]}{rate[j]*a[j]+b[j]})$ 显然是要用凸优化了 splay非常无脑,splay维护此题的凸包,需要找前驱,删前驱…
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提…
DP/CDQ分治 orz Hzwer copy了下他的代码……结果在while(j<top......)这一句中把一个括号的位置打错了……找了我一个多小时才找到TAT 很神奇……顺便贴下CDQ的论文吧 /************************************************************** Problem: 1492 User: Tunix Language: C++ Result: Accepted Time:1420 ms Memory:13388 kb…
cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项: \[ f[i]=f[j]+s*sf[n]-s*sf[j]+st[i]*sf[i]-st[i]*sf[j] \] \[ f[i]=f[j]+s*sf[n]+st[i]*sf[i]-s*sf[j]-st[i]*sf[j] \] \[ f[i]=f[j]+s*sf[n]+st[i]*sf[i]-sf[…
vijos P1508 / BZOJ 1492 膜拜了这么久的cdq分治,终于有机会亲自来写了.虽然这个思想很好理解,先做前一半,计算前一半对后一半的影响,再做后一半.但是由于我这个傻Ⅹ,以前既没有做过斜率优化,也没有做过维护凸包之类,花了好久时间捣鼓具体做法,而且理解思路后写起来还是有点难度的. 主要网上的解题各有各的思路,有的是F数组存最多多少B券,有的是存最多多少A券,虽然大同小异,但是一开始我没意识到所以orz了. 参考资料: <从Cash谈一类分治算法的应用>——cdq <cd…
一.预备知识 \(tD/eD\) 问题:状态 t 维,决策 e 维.时间复杂度\(O(n^{e+t})\). 四边形不等式: 称代价函数 w 满足凸四边形不等式,当:\(w(a,c)+w(b,d)\le w(b,c)+w(a,d),\ a < b < c < d\) 如下所示,区间1.2对应的 w 之和 ≤ 3.4之和 \[ \underbrace {\overbrace {a \to \underbrace{b \to c}_3}^1 \to d }_4 \llap{\overbrac…
整体二分和CDQ分治 有一些问题很多时间都坑在斜率和凸壳上了么--感觉斜率和凸壳各种搞不懂-- 整体二分 整体二分的资料好像不是很多,我在网上找到了一篇不错的资料:       整体二分是个很神的东西,它可以把许多复杂的数据结构题化简.它的精髓在于巧妙地利用了离线的特点,把所有的修改.询问操作整体把握.       先说说第k大数吧,这种问题是整体二分的标志性题目,什么划分树啊,主席树啊,树套树啊见了整体二分都得自叹不如.首先对于一次询问来说我们可以二分答案,然后通过验证比答案大的数有多少个来不…
http://www.lydsy.com/JudgeOnline/problem.php?id=1492 蒟蒻来学学cdq神算法啊.. 详见论文 陈丹琦<从<Cash>谈一类分治算法的应用> orz 此题表示被坑精度.....导致没1a...开小号交了几发....................坑. 蒟蒻就说说自己的理解吧.. 首先这题神dp...(表示完全看不出来) 首先我们要最大化钱,那么可以将问题转化为最大化A券!(或B券)!!!!这点太神了,一定要记住这些!! 设d[i]表…
[题意]初始资金s,有两种金券A和B,第i天,买入时将投入的资金购买比例为rate[i]的两种股票,卖出时将持有的一定比例的两种股票卖出,第i天股票价格为A[i],B[i],求最大获利.n<=100000. [算法]动态规划+斜率优化(CDQ分治) [题解]为了最大获利,每次交易一定是全部买进和全部卖出. 令s[i]表示前i天的最大获利,f[i]表示第i天能购买的最多A股数,g[i]=f[i]/rate[i]表示第i天能购买的最多B股数. s[i]=max{ s[i-1] , f[j]*A[i]…
2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Discuss] Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板…
3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discuss] Description 有N个正整数,需要从中选出一些数,使这些数的和最大. 若两个数a,b同时满足以下条件,则a,b不能同时被选 1:存在正整数C,使a*a+b*b=c*c 2:gcd(a,b)=1 Input 第一行一个正整数n,表示数的个数. 第二行n个正整数a1,a2,?an.    …