P3175 [HAOI2015]按位或】的更多相关文章

bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\sube S} (-1)^{|T|+1} min(T) $ 并且很优秀的是,它在期望情况下成立! 这个有什么关系呢.. 如果每一位分开考虑,如果第 $ i $ 位变成 1 的期望时间是 $ T(i) $ 那么求的是 $ E(max(T_{1\dots n})) $ 这个可以 min-max容斥 求 $…
传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{|T|+1}E(min(T))\),这里的\(E(min(T))\)是集合中加进数字的期望时间,根据题意,加进一个集合数字概率为\(\sum_{s\cap T\ne\emptyset}P_s\),对应的期望,也就是\(E(min(T))=\frac{1}{\sum_{s\cap T\ne\emptys…
传送门 一如既往膜拜shadowice巨巨 前置姿势我就没一个会的-- //minamoto #include<bits/stdc++.h> #define R register #define eps 1e-10 #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i) #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;…
题目大意:刚开始有一个数$x=0$,每秒钟有一个数$y\in[0,2^n)(n\leqslant20)$按一定概率随机出现,数$i$的概率为$p_i$,保证$\sum\limits_{i=0}^{2^n-1}p_i=1$.然后$x\to x|y$,问期望多少时间后,$x=2^n-1$ 题解:$Min-Max$容斥$$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|+1}\min(T)\\\min(S)=\sum\limits_{T\subseteq S}(-…
题目分析 与hdu4336 Card Collector相似,使用min-max容斥. 设\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间. 设\(\min(S)\)表示集合\(S\)中最初一位出现的期望时间. 由min-max容斥可得: \(\max(T)=\sum\limits_{S \subseteq T}(-1)^{|T|-1}\min(S)\) 考虑求每一个\(\min(S)\). 一个很显然的暴力代码: for(int i=0;i<(1<<n);i++){ d…
[BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. Input 第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率 Output 仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过.如果无…
4036: [HAOI2015]按位或 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 746  Solved: 456[Submit][Status][Discuss] Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒…
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n-1. 分析 前置知识:min-max容斥 记\(\max(S)\)为集合\(S\)中的最大值,\(\min(S)\)为集合\(S\)中的最小值(如果\(S=\emptyset\) ,那\(\max(S)=\min(S)=0\)),那么有 \[\max(S)=\sum _{T\subseteq S}…
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机选择一个 $[0,2^n-1]$ 的数字,与你手上的数字进行 $OR$ (按位或) 操作. 选择数字 $i$ 的概率是 $p_i$ .保证 $0\leq p_i\leq 1$ ,$\sum_{i=0}^{2^n-1}p_i=1$ . 问期望多少秒后,你手上的数字变成 $2^n-1$ . $n\leq…
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个数,就要将我们有的数与获得的数进行按位或.问期望经过多少秒后,我们的数变成 $2^n-1$. $1\le n\le 20,\sum p_i=1$. %%%stO shadowice1984 Orz%%% 首先定义 $\min(S)$ 表示 $S$ 中第一个变为 $1$ 的元素的时间.(其中 $S$ 是一个…
http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/50898726 http://blog.csdn.net/qq_21995319/article/details/49800999 for(int i=1;i<=1;i++) for(int j=1;j<=1;j++) f[i○j]=a[i]*b[j]; 当○为按位或时,这种运算就称为集合并卷积.…
Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围太大,不能暴力枚举. 设计DP,令f(i,j,k)表示前i个球中必须选第i个球,有j种区间可以选择并且选择他们不会涂黑决定要涂黑的球,决定要涂黑的球的个数是奇数还是偶数的方案数. 转移就考虑第i个球必须选时,上一个决定要选的球是哪个就行了. 注意这题需要实现一个高精度. CO int N=51; LL d…
题目描述 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. 题解 MIN-MAX容斥 大概就是这么两个东西,做题思路大概就是正难则反吧,max不好求但min好求,就可以直接用这种方法上了. 现在我们算maxV(S),然鹅它不好算,所以我们就转换求所有minV(S). 考虑一个事件发生的概率为p,…
传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits_{T \subset S} (-1)^{|T| + 1} E(min(T))\),我们要求的就是一个集合至少有一个数字出现的期望时间.那么\(E(min(T)) = \frac{1}{\sum\limits_{S' \cap T \neq \emptyset} p_{S'}}\). \(\sum\…
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S>0)=1-∑p[s] (s&S==0).做一个高维前缀和即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<cstdlib>…
考虑min-max容斥 \(E[max(S)] = \sum \limits_{T \subset S} min(T)\) \(min(T)\)是可以被表示出来 即所有与\(T\)有交集的数的概率的和的倒数 通过转化一下,可以考虑求所有与\(T\)没有交集的数的概率和 即求\(T\)的补集的子集的概率和 用FMT随意做下吧... 注意:概率为1的时候需要特判 复杂度\(O(2^n * n)\) #include <cstdio> #include <vector> #include…
题目 好神的题啊 我们发现我们求这个东西如果常规\(dp\)的话可以建出一张拓扑图来,但是边的级别高达\(3^n\),转移的时候还要解方程显然不能通过本题 我们考虑神仙的\(min-max\)容斥 设\(Emax(S)\)表示集合\(S\)中最晚出现的那个自己出现的期望时间,\(Emin(S)\)表示集合\(S\)最早出现的那个子集出现的期望时间 我们套上公式 \[Emax(S)=\sum_{T\subseteq S}(-1)^{|T|+1}Emin(T)\] 我们考虑\(Emin(T)\)怎么…
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = \sum\limits_{T \subseteq S} (-1)^{|T| + 1}E(min\{T\})\] 那么问题就转化为了求每个集合中最早出现的\(1\)的期望时间 假如在\(k\)时刻出现,那么前\(k - 1\)时刻一定都是取的补集的子集,记\(T\)补集的所有子集概率和为\(P\) \…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 题解:https://www.cnblogs.com/Zinn/p/10260126.html #include<cstdio> #include<cstring> #include<algorithm> #define db double using namespace std; ,M=(<<)+; int n,bin[N],lm,ct[M];…
传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. Input 第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率 Output 仅输出一个…
Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. Input 第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率 Output 仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过.如果无解则要输出INF Sample Input 2…
[Luogu3175] [BZOJ4036] [DarkBZOJ没有spj] 原理-shadowice 本题题解 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \(E(max\{S\})=∑_{T⊆S}(−1)^{|T|+1}E(min\{T\})\) 那么问题就转化为了求每个集合中最早出现的\(1\)的期望时间 假如在\(k\)时刻出现,那么前\(k−1\)时刻一定都是取的补集的子集,记\(T\)补集的所有子集概率和为\(P\…
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s),max(s)分别表示集合s里最早和最晚出现的元素,显然E(amx(全集))就是答案 然后有这样的式子: \[ E(max(s))=\sum_{s'\in s}E(min(s'))*(-1)^{|s'|+1} \] \[ E(min(s))=\frac{1}{\sum_{s'\cap s!=\ph…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMax 容斥,可以把问题转化为对于一个集合 \(S\),求 \(S\) 中至少有一个元素出现的概率. 这个问题等价于求 \(S\) 中没有任何一个元素出现的概率,即出现的数都是 \(S\) 的补集的子集的概率. 这个问可以通过 SoSDP 实现,时间复杂度 \(O(n2^n)\). 关于 SoSDP 这…
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. 偶尔也会打一些比赛找找手感(比如HHHOJ的比赛,Luogu比赛,以及comet OJ上之前的CCPC题) CF和CC看情况,主要是我真的不太喜欢读英文题的恐怖感觉233 希望这段时间的努力可以让我不跪省选吧 2-26 早上晨跑完了就和杨浩讲了停课的事,不出意外地很轻松就通过了. 然后回班拿了点东…
炫酷反演魔术课件byVFK stO FDF Orz(证明全有%%%) 莫比乌斯反演 \(F(n)=\sum\limits_{d|n}f(d)\Rightarrow f(n)=\sum\limits_{d|n}\mu(\frac n d)F(d)\) \(F(n)=\sum\limits_{n|d}f(d)\Rightarrow f(n)=\sum\limits_{n|d}\mu(\frac d n)F(d)\) 推带\(\gcd\)的题常用式子:(实际上是借用了积性函数的式子) \([\gcd(…
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k}\) 其中 \(\oplus\) 是二元位运算中的一种. 实现 \(or\) 运算 构造 \(fwt[a]_i = \sum_{j|i=i} a_j\) 则 \(\begin{aligned} fwt[a] \times fwt[b] &= \left(\sum_{j|i=i} a_j\right)…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
这玩意儿一般都是跟概率期望结合的吧,就是下面这个式子(\(max(S)\)代表集合\(S\)中的最大值,\(min(S)\)同理): \[max(S)=\sum\limits_{T\subseteq S}(-1)^{\left | T \right |-1}min(T)\] 证明的话就考虑第\(k\)大的元素对\(max(S)\)的贡献就行了,把式子列出来之后你会发现它的贡献只有在\(k=1\)时才为\(1\),在\(k>1\)全部为\(0\) 能用它做的期望题一般都是这样的:每次操作把集合中的…
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\] 这个东西叫 min-max容斥. 证明可以拿二项式反演证 例题 hdu4336 Card Collector 题目 有 \(n\) 种卡片,每一秒都有 \(P_i\) 的概率获得一张第 \(i\) 种卡片,求每张卡片都至少有一张的期望时间. 记 \(…