Tensorflow多层LSTM代码分析】的更多相关文章

1.tf.Graph() 你一旦开始你的任务,就已经有一个默认的图已经创建好了.而且可以通过调用tf.get_default_graph()来访问到. 添加一个操作到默认的图里面,只要简单的调用一个定义了新操作的函数就行.比如下面的例子展示的: import tensorflow as tf import numpy as np c=tf.constant(value=1) print(c.graph) print(tf.get_default_graph()) <tensorflow.pyth…
tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 之前讲过了tensorflow…
tf,reshape(tensor,shape,name=None) #其中shape为一个列表形式,特殊的一点是列表中可以存在-1.-1代表的含义是不用我们自己#指定这一维的大小,函数会自动计算,但列表中只能存在一个-1. #思想:将矩阵t变为一维矩阵,然后再对矩阵的形式更改 2. c = tf.truncated_normal(shape=[10,10], mean=0, stddev=1) #shape表示生成张量的维度,mean是均值,stddev是标准差,产生正态分布 #这个函数产生的…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 在之前的tensorflow笔记:流程,概念和简单代码注释 文章中,已经大概解释了tensorflow的大概运行流程,并且提…
github地址:https://github.com/tensorflow/models.git 本文分析tutorial/image/cifar10教程项目的cifar10_input.py代码. 给外部调用的方法是: distorted_inputs()和inputs()cifar10.py文件调用了此文件中定义的方法. """Routine for decoding the CIFAR-10 binary file format."""…
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placement=True) # 如果分类的GPU没有,允许tf自动分配设备 tfconfig=tf.gpu_options.allow_growth=True # Gpu 按需增加 sess=tf.Session(config=tfconfig) 定义resnet 类 class resnetv1(Network):#…
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如: tensorflow笔记:多层LSTM代码分析 但是感觉这些例子还是太复杂了,所以这里写了个比较简单的版本,虽然不优雅,但是还是比较容易理解. 如果你想了解 LSTM 的原理的…
本节主要介绍在TensorFlow中实现LSTM以及GRU网络. 一 LSTM网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息.LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广.在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用. LSTM 通过刻意的设计来避免长期依赖问题.记住长期的信息在实践中是 LSTM 的默认行为,而…
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o…
http://blog.csdn.net/pirage/article/details/53424544 分词原理 本小节内容参考待字闺中的两篇博文: 97.5%准确率的深度学习中文分词(字嵌入+Bi-LSTM+CRF) 如何深度理解Koth的深度分词? 简单的说,kcws的分词原理就是: 对语料进行处理,使用word2vec对语料的字进行嵌入,每个字特征为50维. 得到字嵌入后,用字嵌入特征喂给双向LSTM, 对输出的隐层加一个线性层,然后加一个CRF就得到本文实现的模型. 于最优化方法,文本…