一.深度学习建模与调试流程 先看训练集上的结果怎么样(有些机器学习模型没必要这么做,比如决策树.KNN.Adaboost 啥的,理论上在训练集上一定能做到完全正确,没啥好检查的) Deep Learning 里面过拟合并不是首要的问题,或者说想要把神经网络训练得好,至少先在训练集上结果非常好,再考虑那些改善过拟合的技术(BN,Dropout 之类的).否则的话回去检查三个 step 哪里有问题. Deep Learning 中的方法为了解决两个主要问题而提出:1.训练集做得不好:2.训练集做得好…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50856583 声明:版权所有,转载请联系作者并注明出处 1.引言 本系统是基于CVPR2015的论文<Deep Learning of Binary Hash Codes for Fast Image Retrieval>实现的海量数据下的基于内容图片检索系统,250w…
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入需要FQ,我也顺带巩固下,做个翻译,不好之处请包含指正. 当然需要安装python,教程推荐使用python3.如果是Mac,可以参考博…
前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入须要FQ,我也顺带巩固下,做个翻译.不好之处请包括指正. 当然须要安装python,教程推荐使用python3.假设是Mac,能够參考博主的另外两片博文,Mac下升级python2.7到python3.6, Mac安装tensorflow1.0 好多专业词…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
  利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<TensorFlow 增加自定义运算符>).由于运算符的粒度较小,在构建深度学习模型时,代码写出来比较冗长,比如实现卷积层:5, 9 这种方式在设计较大模型时会比较麻烦,需要程序员徒手完成各个运算符之间的连接,像一些中间变量的维度变换.运算符参数选项.多个子网络连接处极易发生问题,肉眼检查也很难发现代码中潜伏的…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…