HMM AND CRF】的更多相关文章

本文参考自:http://blog.csdn.net/happyzhouxiaopei/article/details/7960876 这三个模型都可以用来做序列标注模型.但是其各自有自身的特点,HMM模型是对转移概率和表现概率直接建模,统计共现概率.而MEMM模型是对转移 概率和表现概率建立联合概率,统计时统计的是条件概率.MEMM容易陷入局部最优,是因为MEMM只在局部做归一化,而CRF模型中,统计了全局概率,在 做归一化时,考虑了数据在全局的分布,而不是仅仅在局部归一化,这样就解决了MEM…
HMM,MEMM,CRF模型之间关系密切,需看: 参考文献: http://www.cnblogs.com/kevinGaoblog/p/3874709.html http://baike.baidu.com/link?url=3BRZ5qo58-3MaGzPqI7zWhcqNY-0xfjUf79AMDLsv1gHK2JXp2lEZ53KuL56kmJVxlT0hTydmGHXnaAnFqoy1q…
DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别,通过硬件防火墙搞定.大数据方案是针对慢速DDos攻击来搞定.难点:在进行攻击的时候,攻击数据包都是经过伪装的,在源IP 地址上也是进行伪造的,这样就很难对攻击进行地址的确定,在查找方面也是很难的.这样就导致了分布式拒绝服务攻击在检验方法上是很难做到的.领域知识见:http://blog.csdn.n…
朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM),  最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会证明 Logistic 与 MaxEnt 的等价性,接下来将从图模型的角度阐述几个模型之间的关系,首先用一张图总结一下几个模型的关系: Logistic(Softmax)  MaxEnt 等价性证明 Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价…
LR:Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价的,则 Logistic 与 MaxEnt 是等价的. HMM模型: 将标注看作马尔可夫链,一阶马尔可夫链式针对相邻标注的关系进行建模,其中每个标记对应一个概率函数.HMM是一种生成模型,定义了联合概率分布,其中 x 和 y 分别表示观察序列和相对应的标注序列的随机变量.为了能够定义这种联合概率分布,生成模型需要枚举出所有可能的观察序列,这在实际运算过程中很困难,因为我们需要将观察序列的元素…
声明:本文主要是基于网上的材料做了文字编辑,原创部分甚少.參考资料见最后. 隐马尔可夫模型(Hidden Markov Model.HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最经常使用也是最主要的三个模型.HMM首先出现.MEMM其次,CRF最后.三个算法主要思想例如以下: HMM模型是对转移概率和表现概率直接建模,统计共现概率. MEMM模型是对转移概率…
原文链接:http://bbs.sciencenet.cn/home.php?mod=space&uid=260809&do=blog&id=573755 注:有少量修改!如有疑问,请访问原作者. 做高端的生物信息理论离不开各种modeling 于是乎漫长的digest之路开始... 一:最大熵模型 Maximum Entropy 现从一个简单例子看起(不要把鸡蛋放在一个篮子里): 比如华盛顿和维吉利亚都可以作人名和地名,而从语料中只知道p(人名)=0.6,那么p(华盛顿=人名)的…
Structured Learning 4: Sequence Labeling:https://www.youtube.com/watch?v=o9FPSqobMys HMM crf 李宏毅老师讲的很清楚明了,截图当笔记,偶尔回顾一下.大家可以去看…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 HMM CRF HMM和CRF对比 1.HMM算法 隐马尔可夫模型是用于标注问题的生成模型.有几个参数(ππ,A,B):初始状态概率向量ππ,状态转移矩阵A,观测概率矩阵B.称为马尔科夫模型的三要素. 马尔科夫三个基本问题: 概率计算问题:给定模型和观测序列,计算模型下观测序列输出的概率.–>前向后向算法 学习问题:已知观测…
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语…
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常浅,基于 [1] 和 [5] 梳理.感觉 [1] 的讲解很适合完全不知道什么是CRF的人来入门.如果有需要深入理解CRF的需求的话,还是应该仔细读一下几个英文的tutorial,比如 [4] . (一)马尔可夫随机场简单回顾 概率图模型(Probabilistic graphical model,P…
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题,它有哪些优缺点. 实际上我们可以不太严谨地这么说,HMM -> HEMM -> CRF,它们之间是逐渐演进的结果. 隐马尔可夫模型(Hidden Markov Model,HMM).最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM).以及条件随机场(Cond…
概率图模型 HMM 先从一个具体的例子入手,看看我们要解决的实际问题.例子引自wiki.https://en.wikipedia.org/wiki/Hidden_Markov_model Consider two friends, Alice and Bob, who live far apart from each other and who talk together daily over the telephone about what they did that day. Bob is…
原文链接:https://www.jianshu.com/p/55755fc649b1 如何轻松愉快地理解条件随机场(CRF)?   理解条件随机场最好的办法就是用一个现实的例子来说明它.但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧.于是乎,我翻译了这篇文章.希望对其他伙伴有所帮助.原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/] 想直接看英文的朋…
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 前言 通过前面几篇系列文章,我们从分词中最基本的问题开始,并分别利用了1-gram和HMM的方法实现了分词demo.本篇博文在此基础上,重点介绍利用CRF来实现分词的方法,这也是一种基于字的分词方法,在将句子转换为序列标注问题之后,不使用HMM的生成模型方式,而是使用条件概率模型进行建模,即判别模型…
对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场(crf):是给定一组输入随机变量条件下,另一组输出随机变量的条件概率的分布模型,其特点是假设输出随机变量构成马尔科夫随机场.本文所指线性链条件随机场. 隐马尔科夫模型(HMM):描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型. 当然,作为初学者,从概念上直观感受不到两者的区别与联系,甚至…
这是以前的一篇草稿,当初没写完,今天发出来,但总觉得水平有限,越学越觉得自己菜,写的博客水准低,发完这篇以后就谨慎发博了,毕竟自己菜,不能老吹B,下面是原稿. 好久没更了,本来年前想写篇关于爬虫的总结来,结果在家懒癌发作,开学了也没“挤”出时间来.今天主要是心情好,写下自己学到的一点知识,长了一点人生的经验. 前两周看了HMM和CRF的知识,因为最近做的东西要用到,这两天在用crf++,目前最新的好像是0.58版,再新的没找到资源,貌似0.54之后就只有发布的exe了,0.53版的还有源码,感兴…
CRF的进化 https://flystarhe.github.io/2016/07/13/hmm-memm-crf/参考: http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/ 说明:因为MEMM只在局部做归一化,所以容易陷入局部最优,而CRF模型中,统计了全局概率,在做归一化时,考虑数据在全局的分布,而不是仅仅在局部归一化,解决了MEMM中的标记偏置的问题,可以得到全局最优:CRF没有HMM那样严…
自然语言处理 -->计算机数据 ,计算机可以处理vector,matrix 向量矩阵. NLTK 自然语言处理库,自带语料,词性分析,分类,分词等功能. 简单版的wrapper,比如textblob. import nltk nltk.download() #可以下载语料库等. #自带的语料库 from nltk.corpus import brown brown.categories() len(brown.sents()) # 多少句话 len(brown.words()) # 多少个单词…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断inference. 图模型是用图的方式表示概率推理 ,将概率模型可视化,方便展示变量之间的关系,概率图分为有向图和无向图.有向图主要是贝叶斯网络,无向图主要是马尔科夫随机场.对两类图,prml都讲了如何将联合概率分解为条件概率,以及如何表示和判断条件依赖. 先说贝叶斯网络,贝叶斯网络是有向图,用节点表…
1. 算法相关 1.1 <编程珠玑> 1.2 <编程之美> 这两本是最经典的了,这里面注重的是解决问题的思路,看的时候里面的问题要认真思考再参考解答.下面两本是对具体的面试题做一些解答,同时有详细代码实现的. 1.3 <剑指Offer> 1.4 <Cracking the coding interview> 上面这四本我觉得都是必备的,里面的题目解决思路要数量掌握,能够举一反三.解决相关变种问题.同时,里面的题目,应该都要在纸上实现,然后再在电脑里实现.测试…
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n-gram的结合可看我的这篇文章:https://www.cnblogs.com/Luv-GEM/p/10543612.html 用TF-IDF来分析文本的相似度可看阮一峰大佬的文章:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.h…
在深度学习中,文本分类的主要原型:Text  label,坐边是输入端“X”,右边是输出端“Y”.行业baseline:用BoW(bag of words)表示sentences(如何将文本表达成一个数字的形式),然后用LR或者SVM做回归.中英文做自然语言处理主要区别,中文需要分词(启发式Heuristic, 机器学习.统计方法HMM.CRF))深度学习:从端到端的方式,以不掺和人为的计算,从X到Y暴力粗暴的学习.通过很隐层(包含大量线性和非线性的计算)试图模拟数据的内在结构.新手推荐用kr…
主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的理解. 问题由来 给你某人一天内一系列生活照片,让你为每一张照片添加label(比如唱歌,跳舞,吃饭...),你要怎么做. 一种方式是忽略照片的顺序性,训练出一个classifier.比如你可以拿一个月的快照作为训练样本,然后训练出一个模型.这样来一个新图片,背景很暗,拍摄于早上,模型可能会将其判断…
  本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位.一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.时间.日期.货币和百分比)命名实体.   举个简单的例子,在句子"小明早上8点去学校上课."中,对其进行命名实…
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做个总结,种种事情一直拖到现在,今天抽空赶紧将最后一篇补上.前面几篇博文中我们已经阐述了不论分词.词性标注亦或NER,都可以抽象成一种序列标注模型,seq2seq,就是将一个序列映射到另一个序列,这在NLP领域是非常常见的,因为NLP中语序.上下文是非常重要的,那么判断当前字或词是什么,我们必须回头看…
没有完全看懂,以后再看,特别是hmm,CRF那里,以及生成模型产生的数据是序列还是一个值,hmm应该是序列,和图像的关系是什么. [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测    - 判别模型(Discriminative Model):有限样本==>判别函数 = 预测模型==>预测 [简介]简单的说,假设o是观察值,q是模型.如果对P(o|q)建模,就是Generative模型.其基本思想是首先建立样本的…
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术.在其中,分词技术是一种比较基础的模块.对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来.而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来.分词的意义非常大,在中文中,单字作为最基本的语义单位…