题意 如果对一个数操作\(k\)次,那么这个数会变成\(c^{c^{...^{a_i}}}\),其中\(c\)有\(k\)个. 根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自己的欧拉函数,大约\(log\)次就会变成1,而任何数模\(1\)都是\(0\),于是我们可以用势能线段树解决. 因为模数不变,因此我们可以预处理所有\(\varphi(\varphi(...\varphi(p)...))\),之后在线段树上记录操作次数. 这样是三个\(log\)的,因为还要快速幂…