cogs2223 [SDOI2016 Round1] 生成魔咒 原题链接 题解 暴力:每次更新后缀数组??? set+二分+hash暴力 http://paste.ubuntu.com/25496298/ 正解:把串反过来,答案不变,但每次只需插入一个后缀. 先预处理出整个后缀数组,然后set插入. len=n时,\(ans=\frac{n(n+1)}{2}-\sum ht[i]\) Code // It is made by XZZ #include<cstdio> #include<…
#2033. 「SDOI2016」生成魔咒     题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1 11.2 22 拼凑起来形成一个魔咒串 [1,2] [1, 2][1,2]. 一个魔咒串 S SS 的非空子串被称为魔咒串 S SS 的生成魔咒. 例如 S=[1,2,1] S = [1, 2, 1]S=[1,2,1] 时,它的生成魔咒有 [1] [1][1].[2] [2][2].[1,2] [1, 2][1,2].[2,1] [2, 1][2,1].[1,2…
题意:对一个空串每次在后面加一个字符,问每加完一次得到的字符串有几个不同的子串. 思路:每个子串都是某个后缀的前缀,对于每个后缀求出他能贡献出之前没有出现过的前缀的个数,答案累加就行. 要求每个后缀的贡献,就是这个后缀的长度减去此前的后缀与该后缀的LCP的最大值,这个最大值是height[i]. 至于怎么找出先前的能与该后缀生成最大LCP的后缀,可以用set维护,将cmp函数自定义成按字典序从小到大, 那么目标后缀就是当前后缀的前趋或后继,求两次LCP并更新答案即可.字符串hash用来比较,二分…
[SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次从后缀集合中删掉一个后缀. 预处理出后缀数组和高度数组后,用平衡树维护所有后缀集合(按照后缀排序),要删除一个后缀 \(S[sa[p],n]\) 时,找到它在平衡树上的前驱 \(u\) 和后继 \(v\) ,如果都存在,那么这一步的贡献就是 \[(n-sa[p]+1) - Max(h[p],h[v]…
题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种.S=[1,1,1] 时,它的生成魔咒有 [1].[1,1].[1,1,1] 三种.最初 S 为空串.共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符.每次操作后都需要求出,当前的魔咒串 S 共有多少…
★★☆ 输入文件:menci_incantation.in 输出文件:menci_incantation.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述]魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒.例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种.S=[1,1,1] 时,它的生成魔咒有 [1…
题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i]}\). 如果是每次往后边插入字符,会改变SA[].但如果向前边插入字符,相当于只加入了一个后缀. 所以离线,把原串反过来. 每次插入一个字符,即新增一个前缀i,它的贡献是\(len-max(lcp(pre,i),lcp(i,nxt))\),其中\(pre,nxt\)为与后缀\(i\)(当前)排名相…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为N的字符串,对于每一个前缀,求本质不同的子串的个数.(字符集为int) 做法 首先,我们把所有的数字离散化.然后考虑后缀数组,我们把字符串倒过来,于是很神奇地,往最后加字符变成了添加一个后缀. 我们知道,在求出SA之后,一个字符串的本质不同的子串的个数等于(子串的个数)-(重复计数的个数)等于\(\…
传送门 解题思路 题目其实就是动态维护本质不同的串的个数.考虑到只有加数字的操作,所以可以用后缀数组.题目是每次往后加数字,这样不好处理,因为每次加数字之后所有的后缀都会改变.所以要转化一下思路,就是将序列翻转,这样的话每次操作都是加入一个后缀,而对于一个串来说,本质不同的串的个数\(ans=\dfrac {n(n-1)}{2}-\sum\limits_{i=1}^n height[i]\).考虑加入一个后缀时答案的\(height\)变化,首先根据\(lcp\)的性质,这个后缀\(s\)在当前…
题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就相当于添加一个后缀 然后直接用set xjb维护一下前驱后继就行了 时间复杂度:\(O(nlogn)\) // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define sit set<i…