轰炸行动(bomb):tarjan,拓扑排序】的更多相关文章

题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'是V的自己,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不…
题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在,请你帮忙计算一下,先把第 i 个炸弹引爆,将引爆多少个炸弹呢?  输入 第一行,一个数字 N,表示炸弹个数.  第 2∼N+1行,每行 2 个数字,表示 Xi,Ri,保证 Xi 严格递增.  N≤500000 −10^18≤Xi≤10^18 0≤Ri≤2×10^18 输出 一个数字,表示Sigma…
https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mm 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1条. C C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 CC 国旅…
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,…
[BZOJ2707][SDOI2012]走迷宫 Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. Input 第1行4个整数,N,M,S,T 第[2, M…
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给…
Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). 来源于百度百科 我本人的理解:有向图内的一个不能再拓展得更大的强连通子图叫做这个有向图的一个强连通…
题目描述 给定一个 n个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入格式 第一行两个正整数 n,,m 第二行 n 个整数,依次代表点权 第三至 m+2行,每行两个整数 u,v,表示一条 u→v 的有向边. 输出格式 共一行,最大的点权之和. 题目链接:P3387 分析:相信大家已经看过题目了,在看我的题解之前也应该看过别的大佬的题解了(毕竟我是蒟蒻),虽然所有的题解…
题目大意:给定一个n个点的有向图,求有多少点对(x,y),使x沿边可到达y 设f[i][j]为从i到j是否可达 首先强联通分量中的随意两个点均可达 于是我们利用Tarjan缩点 缩点之后是一个拓扑图.我们求出拓扑序,沿着拓扑序从后向前DP,状态转移方程为: f[i][k]=or{ f[j][k] } (i有直连边到达j,1<=k<=n,n为强连通分量的个数) 鉴于每一个点的值仅仅会是1或者0.所以我们能够直接状压,或者干脆开bitset,总体取或就可以 时间复杂度O(mn/32) 今天各种手滑…