Pandas 数据筛选,去重结合group by】的更多相关文章

Pandas 数据筛选,去重结合group by 需求 今小伙伴有一个Excel表, 是部门里的小伙9月份打卡记录, 关键字段如下: 姓名, 工号, 日期, 打卡方式, 时间, 详细位置, IP地址.... 脱敏数据: 姓名 工号 日期 方式 时间 ... 小赵 123 2019-09-01 GPS 08:37:50 .... 小赵 123 2019-09-01 GPS 18:10:50 ... 小陈 124 2019-09-01 GPS 08:47:30 ... 小陈 124 2019-09-…
本博主要总结DaraFrame数据筛选方法(loc,iloc,ix,at,iat),并以操作csv文件为例进行说明 1. 数据筛选 a b c (1)单条件筛选 df[df[] # 如果想筛选a列的取值大于30的记录,但是之显示满足条件的b,c列的值可以这么写 df[[] # 使用isin函数根据特定值筛选记录.筛选a值等于30或者54的记录 df[df.a.isin([, ])] (2)多条件筛选 可以使用&(并)与| (或)操作符或者特定的函数实现多条件筛选 # 使用&筛选a列的取值大…
数据转换 移除重复数据 import pandas as pd import numpy as np from pandas import Series data = pd.DataFrame( {'k1':['one']*3+['two']*4, 'k2':[1,1,2,3,3,4,4]}) data k1 k2 0 one 1 1 one 1 2 one 2 3 two 3 4 two 3 5 two 4 6 two 4 duplicated方法返回一个布尔型Series,表示各行是否是重复…
Select rows from a DataFrame based on values in a column -pandas 筛选 https://stackoverflow.com/questions/17071871/select-rows-from-a-dataframe-based-on-values-in-a-column-in-pandas pandas的筛选功能,跟excel的筛选功能类似,但是功能更强大. 在SQL数据中, 我们可以用这样的语句: select * from…
Pandas数据规整 数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求 Pandas提供了一组高级的.灵活的.高效的核心函数和算法,它们能够轻松地将数据规整化为你需要的的形式 合并 连接 Pandas提供了大量方法,能轻松的对Series,DataFrame和Panel执行合并操作 连接pandas对象 .concat() df = pd.DataFrame(np.random.randn(10, 4)) df pieces =…
Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV – lxw的大数据田地 http://lxw1234.com/archives/2015/09/516.htm Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV 编程语言  lxw1234@qq.com  3年前 (2015-09-25)  15132℃  1评论 关键字:streamlib.基数估计.实时计算uv.大数据.去重计数 一直在想如何在实时计算中完成对海量数据去重计数的功能,即SELECT…
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series pandas 常用函数 补充内容 1 关于pandas / About pandas Pandas起源 Python Data Analysis Library或pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效…
使用 joblib 对 Pandas 数据进行并行处理 如果需要对一个很大的数据集进行操作,而基于一列数据生成新的一列数据可能都需要耗费很长时间. 于是可以使用 joblib 进行并行处理. 假设我们有一个 dataframe 变量 data,要基于它的 source 列生成新的一列 double,其实就是把原来的 source 列做了个平方运算.感觉就这个简单的运算,应该有更简单的方法,在这里只是举个例子,我们使用 apply 方法并行实现. 如果直接使用 apply 那么直接如下实现 imp…
一.数据类型 1.Pandas的数据类型主要结合了pandas和numpy两个模块中的数据类型,包括以下几种: float int bool datetime64[ns]------>日期类型 datetime64[ns,tz]--->日期类型 timedelta[ns]------->时间差类型 category object---->当一个Series仅包括字符串或是包括多种数据类型时为object类型 2.通过DateFrame对象的dtypes属性,可得到各个特征的数据类型…
有时数据读入后并不是对整体数据进行分析,而是数据中的部分子集,例如,对于地铁乘客量可能只关心某些时间段的流量,对于商品的交易可能只需要分析某些颜色的价格变动,对于医疗诊断数据可能只对某个年龄段的人群感兴趣等.所以,该如何根据特定的条件实现数据子集的获取将是本节的主要内容. 通常,在pandas模块中实现数据框子集的获取可以使用iloc,loc和ix三种‘方法’,这三种方法既可以对数据进行筛选,也可以实现变量的挑选,它们的语法可以表示 成[row_select,cols_select]. iloc…