python 和 R 中的整数序列】的更多相关文章

python 中的 range() 函数是很常用的,R  中相应的函数是 seq(), 其实,R 中的“ :”也能代替 python 中的 range() 函数. 1.生成升序整数序列 python:(range 不包含 stop 值,函数默认 start=0, step=1 ) R 语言:(seq 包含 to 值,默认 from=1,by =1) 2.生成降序整数序列 python: R 语言: 按语: range 函数的三个参数都是整数,生成的是一个 range 对象,需要用 list 函数…
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函数中就有主成分分析法的实现函数princomp(),其主要参数如下: data:要进行主成分分析的目标数据集,数据框形式,行代表样本,列代表变量 cor:逻辑型变量,控制是否使用相关系数进行主成分分析 scores:逻辑型变量,控制是否计算每个主成分的得分 我们使用了R中自带的数据集USJudgeR…
对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为: ##最小二乘法 import numpy as np import scipy as sp import matplotlib.pyplot as plt from scipy.optimize import leastsq ''' 设置样本数据,真实数据需要在这里处理 ''' ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi=np.array([1,2,3,4,5,6]) #Yi=np.…
R # 一数多图 x <- 2:6 y <- 7:3 y1 <- y +2 opar <- par(no.readonly = TRUE) par(mfrow=c(2, 3)) plot(x, y) plot(x, y, type="l") barplot(x, y) # 简单条形图 barplot(x, y, horiz=TRUE) # 水平条形图 par(opar) python import numpy as np import matplotlib.py…
a=[] b=[] for i in range(len(predicted)): b.append((int)(float(predicted[i]))) a.append(int(test_set.label[i][0])) f=open('F:/goverment/ArticleMining/predict.txt', 'w') for i in range(len(predicted)): f.write(str(b[i])) f.write('\n') f.write("写好了&quo…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…
网络上经常看到有人问数据分析是学习Python好还是R语言好,还有一些争论Python好还是R好的文章.每次看到这样的文章我都会想到李舰和肖凯的<数据科学中的R语言>,书中一直强调,工具不分好坏,重要的是解决问题的思路,就算是简单的excel,也能应付数据分析中的大部分问题.再者Python和R本来就没有什么好对比的,一门是计算机工程语言,一门是统计语言,只有将两者结合起来,才能发挥更大的威力,不是吗,对于数据分析的人来说,难道不是两样都要掌握的吗? rpy2是Python调用R程序的模块,旨…
为了鼓励新工具的出现,机器学习和数据分析领域似乎已经成了“开源”的天下.Python 和 R 语言都具有健全的生态系统,其中包括了很多开源工具和资源库,从而能够帮助任何水平层级的数据科学家展示其分析工作. 机器学习和数据分析之间的差异有些难以言明,但二者最主要的不同就在于,比起模型的可解释性,机器学习更加强调预测的准确性:而数据分析则更加看重模型的可解释性以及统计推断.Python ,由于更看重预测结果的准确性,使其成为机器学习的一把利器. R ,作为一种以统计推断为导向的编程语言,在数据分析界…
一.简介 KNN(k-nearst neighbors,KNN)作为机器学习算法中的一种非常基本的算法,也正是因为其原理简单,被广泛应用于电影/音乐推荐等方面,即有些时候我们很难去建立确切的模型来描述几种类别的具体表征特点,就可以利用天然的临近关系来进行分类: 二.原理 KNN算法主要用于分类任务中,用于基于新样本与已有样本的距离来为其赋以所属的类别,即使用一个新样本k个近邻的信息来对该无标记的样本进行分类,k是KNN中最基本的参数,表示任意数目的近邻,在k确定后,KNN算法还依赖于一个带标注的…