MapTask工作机制】的更多相关文章

1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRecordReader)按行读取内容给map(用户自己实现的map方法),进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task 都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候…
1. 阶段定义 MapTask:map----->sort map:Mapper.map()中将输出的key-value写出之前 sort:Mapper.map()中将输出的key-value写出之后 2. MapTask工作机制 Read阶段 MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value. Map阶段 该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value. Collect收…
(1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value. (2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value. (3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果.在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个…
MapReduce框架原理-MapTask工作机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度.那么,mapTask并行任务是否越多越好呢? 一.数据切片及MapTask并行度决定机制 1>.一个job的map阶段MapTask并行度(个数),由客户端提交job时的切片个数决定; 2>.每一个split切片分配一个mapTask并行实例处理: 3>.默认情况下,切片大小=block…
MapTask工作机制 并行度决定机制 1)问题引出 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度.那么,mapTask并行任务是否越多越好呢? 2)MapTask并行度决定机制 一个job的map阶段MapTask并行度(个数),由客户端提交job时的切片个数决定. 切片(逻辑上的切分)大小默认等于128M,和block大小相等,原因是如果不按照block大小进行切分,可能会涉及到一些不同节点之间数据的传输. MapTask工作机制 总结 read阶段:…
1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRecordReader)按行读取内容给map(用户自己实现的map方法),进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task 都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候…
@ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapReduce运行机制 过程描述 第一阶段:作业提交(图1-4步) 第二阶段:作业初始化(图5-7步) 第三阶段:任务的分配(图8) 第四阶段:任务的执行(图9-11) 第五阶段:作业完成 Tips 知识点:进度和状态更新 4.MR各组成部分工作机制原理 4.1概览: 4.2 MapTask工作机制 4.…
目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试ReduceTask多少合适 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 Read阶段 主要是Job的提交流程 1.切片划分 2.提交给Yarn Job.split 切片信息 wc.jar 集群模式会提交,本地模式不会提交 Job.xml 配置信息 3.Yarn开启Node…
摸索了将近一个月的hadoop , 在centos上配了一个伪分布式的环境,又折腾了一把hadoop eclipse plugin,最后终于实现了在windows上编写MapReduce程序,在centos上可以执行. 关于环境的配置,网上很多,不再废话. 仅以此系列的博客记录学习过程中的点点滴滴. ##############################传说中的分割线##################### 学习了WordCount程序,也照着网上的某些文章,实现了一些简单的MapRed…
MapRdeuce&Yarn的工作机制 一幅图解决你所有的困惑 那天在集群中跑一个MapReduce的程序时,在机器上jps了一下发现了每台机器中有好多个YarnChild.困惑什么时YarnChild,当程序跑完后就没有了,神奇.后来百度了下,又问问了别的大佬.原来是这样 什么是YarnChild: 答:MrAppmaster运行程序时向resouce manager 请求的maptask/reduceTask.也是运行程序的容器.其实它就是一个运行程序的进程. 图解说下: hadoop1版本…