logistic regression是分类算法中非常重要的算法,也是非常基础的算法.logistic regression从整体上考虑样本预测的精度,用判别学习模型的条件似然进行参数估计,假设样本遵循iid,参数估计时保证每个样本的预测值接近真实值的概率最大化.这样的结果,只能是牺牲一部分的精度来换取另一部分的精度.而svm从局部出发,假设有一个分类平面,找出所有距离分类平面的最近的点(support vector,数量很少),让这些点到平面的距离最大化,那么这个分类平面就是最佳分类平面.从这…
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_variance_score) 4 中值绝对误差(Median absolute error) 5 R2 决定系数(拟合优度) 模型越好:r2→1 模型越差:r2→0 二 逻辑斯蒂回归 1 概述 在逻辑斯蒂回归中,我们将会采用sigmoid函数作为激励函数,所以它被称为sigmoid回归或对数几率回归…
1. model 这里待求解的是一个 binary logistic regression,它是一个分类模型,参数是权值矩阵 W 和偏置向量 b.该模型所要估计的是概率 P(Y=1|x),简记为 p,表示样本 x 属于类别 y=1 的概率: P(Y=1|x(i))=p(i)=eWx(i)+b1+eWx(i)+b=11+e−Wx(i)−b 当然最终的目标是求解在整个样本集 D={(x(i),y(i)),0<i≤N} 的对数概率(关于 W和 b): ℓ(W,b)=−1N∑iNy(i)logp(i)+…
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklearn 逻辑回归模型的参数,以及具体的实战代码. 1.逻辑回归的二分类和多分类 上次介绍的逻辑回归的内容,基本都是基于二分类的.那么有没有办法让逻辑回归实现多分类呢?那肯定是有的,还不止一种. 实际上二元逻辑回归的模型和损失函数很容易推广到多元逻辑回归.比如总是认为某种类型为正值,其余为0值. 举个例子…
代码及数据:https://github.com/zle1992/MachineLearningInAction logistic regression 优点:计算代价不高,易于理解实现,线性模型的一种. 缺点:容易欠拟合,分类精度不高.但是可以用于预测概率. 适用数据范围:数值型和标称型. 准备数据: def loadDataSet(): dataMat,labelMat = [],[] with open(filename,"r") as fr: #open file for li…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 这节学习的是逻辑回归(Logistic Regression)…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
Logistic Regression 的前世今生(理论篇) 本博客仅为作者记录笔记之用,不免有非常多细节不正确之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如需转载,请附上本文链接,不甚感激! http://blog.csdn.net/cyh_24/article/details/50359055 写这篇博客的动力是源于看到了以下这篇微博: 我在看到这篇微博的时候大为触动,由于,如果是rickjin来面试我.我想我会死的非常慘,由于他问的问题我基本都回答不上来.…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear…
此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一)Logistic Regression 原理 对于分类问题,假设我们想得到的结果不是(x属于某一类)这种形式,而是(x属于某一类的概率是多少)这种形式. 因为s的范围是(-∞,+∞), 而概率的范围是[0,1],所以我们需要一个映射函数: 我们如何应用概率知识来解决这一问题呢?一种想法是使用极大似然法. 现在出现了类似于linear Regression中的形式,我们可以求梯度. 根据上式,并不能得出向量w的clo…
注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模…
转自:http://blog.csdn.net/dongtingzhizi/article/details/15962797 Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的Logisti…
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等.(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用.该结果往往用于和其他特征值加权求和,而非直接相乘) 那么它究竟是什么样的一个东西,又有哪些适用情况和不适用情况呢?   一.官方定义: , Figure 1. The log…
一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出是连续的.具体的值(如具体房价123万元)不同,逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题.回答“是”可以用标签“1”表示,回答“否”可以用标签“0”表示. 比如,逻辑回归的输出是“某人生病的概率是多少”,我们可以进一步理解成“某人是否生病了”.设…
原文:http://blog.xlvector.net/2014-02/different-logistic-regression/ 最近几年广告系统成为很多公司的重要系统之一,定向广告技术是广告系统中的重要技术,点击率预估是定向广告技术中的重要组成部分,Logistic Regression是解决点击率预估最常用的机器学习算法.所以本文介绍一下Logistic Regression(下文简称LR). 解决的问题 LR主要用来解决两类分类问题.下面的问题是一些典型的两类分类问题: 用户看到一个广…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
0. 前言   这学期 Pattern Recognition 课程的 project 之一是手写数字识别,之二是做一个网站验证码的识别(鸭梨不小哇).面包要一口一口吃,先尝试把模式识别的经典问题——手写数字识别做出来吧.这系列博客参考deep learning tutorial ,记录下用以下三种方法的实现过程: Logistic Regression - using Theano for something simple Multilayer perceptron - introductio…
从这节算是开始进入“正规”的机器学习了吧,之所以“正规”因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计算出y,这就是回归.而逻辑回归…
一.逻辑回归简述: 回顾线性回归算法,对于给定的一些n维特征(x1,x2,x3,......xn),我们想通过对这些特征进行加权求和汇总的方法来描绘出事物的最终运算结果.从而衍生出我们线性回归的计算公式: 向量化表达式: 这一系列W值(w1,w2,w3....wn)和截距b就是拟合了我们这些特征对应于结果f(x)的线性关系,当我们给出新的一些特征x的是时候,可以根据这些W值特征x进行内积加截距b来预测出给定的新特征x对应的结果f(x). 然而在采用回归模型分析实际问题中,我们想得出的结果不单纯是…
logistic regression model LR softmax classification Fly logistic regression model loss fuction softmax 基于python的logistic regression代码 logistic regression model 逻辑回归模型一般指的是二项分类的逻辑回归模型,也是非常经典的模型,它主要的决策函数是,给定数据的情况下,来求取Y属于1或者0的概率.具体的,我们可以做如下表示: 这里, 是输入,…
1 Logistic Regression 简述 Linear Regression 研究连续量的变化情况,而Logistic Regression则研究离散量的情况.简单地说就是对于推断一个训练样本是属于1还是0.那么非常easy地我们会想到概率,对,就是我们计算样本属于1的概率及属于0的概率,这样就能够依据概率来预计样本的情况,通过概率也将离散问题变成了连续问题. Specifically, we will try to learn a function of the form: P(y=1…
原文首发于个人博客https://kezunlin.me/post/c50b0018/,欢迎阅读! Brewing Logistic Regression then Going Deeper. Brewing Logistic Regression then Going Deeper While Caffe is made for deep networks it can likewise represent "shallow" models like logistic regress…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
1.PyTorch基础实现代码 import torch from torch.autograd import Variable torch.manual_seed(2) x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]])) y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]])) #初始化 w = Variable(torch.Tensor([-1]), re…
机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57维特征,2分类问题.采用逻辑回归方法.但是上述数据集在kaggle中没法下载,于是只能用替代的方法了,下了breast-cancer-wisconsin数据集. 链接在这http://archive.ics.uci.edu/ml/machine-learning-databases/breast-c…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…
Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只让最靠近中间分割线的那些点尽量远离,即只用到那些"支持向量"的样本--所以叫"支持向量机". ② SVM可以处理非线性的情况 即,比Logistic更强大的是,SVM还可以处理非线性的情况.​ ③Logistic regression 和 SVM本质不同在于loss f…
Sigmoid Function \[ \sigma(z)=\frac{1}{1+e^{(-z)}} \] feature: axial symmetry: \[ \sigma(z)+ \sigma(-z)=1 \] gradient: \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z)[1-\sigma(z)] \] 由性质1 可知, \[ \frac{\partial\sigma(z)}{\partial z} = \sigma(z) \s…
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其理论部分参考:http://www.cnblogs.com/ljy2013/p/5129610.html 下面我们跟随我的demo来一步一步解剖源码,首先来看一下我的demo: package org.apache.spark.mllib.classification import org.apac…