[THUPC2019]不等式/[51Nod1598]方程最小值 题目大意: 给定\(a_{1\sim n}\)和\(b_{1\sim n}\),令\(f_k(x)=\sum_{i=1}^k|a_ix+b_i|\).对于所有\(k=1\sim n\),求\(f_k\)在\(\mathbb{R}\)中的最小值. \(1\le n\le 5\times10^5,|a_i|,|b_i|<10^5\) 思路: \[\sum_{i=1}^k|a_ix+b_i|=\sum_{i=1}^k|a_i||x+\fr…
一.实验目的与要求 1.用for语句实现循环 (1)求数列前n项和 掌握for语句实现循环的方法 (2)求数列前n项和 掌握for语句实现循环的方法 循环嵌套的使用 2.用while循环语句实现循环 (1)统计学生的最高最低成绩 用for循环计算第n项的值 用for循环计算前n项的和 注意每项的正负号变化 (2)求水仙花数 进一步掌握while语句实现循环的方法 3.用do while 语句实现循环 掌握do/while语句实现循环的方法 4.用while语句和for语句配合实现循环 掌握whi…
http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 找出一个区间,使得(区间内不同数的个数/区间长度)的值最小,并输出该值. 思路: 因为是要求$\frac{f(x)}{g(x)}$的最值,所以这是分数规划的题目,对于分数规划,是要用二分查找的方式去解决的. 就像官方题解说的,二分查找mid,二分答案mid,检验是否存在一个区间满足$\frac{size(l,r)}{(r-l+1)}<=mid$,表示l~r内不同数的个数. 先把上面的式子转化一下…
今天是机器学习专题的第33篇文章,我们继续来聊聊SVM模型. 在上一篇文章当中我们推到了SVM模型在线性可分的问题中的公式推导,我们最后得到的结论是一个带有不等式的二次项: \[\left\{\begin{align*} &\min_{\omega , b} \frac{1}{2}||\omega||^2\\ s.t.& \quad y_i(\omega^Tx + b) \ge 1, &i=1,2,3\ldots,m\\ \end{align*}\right.\] 想要了解具体推导…
学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp(k+1,j))+cost(i,j)  O(n^3) 四边形不等式:将其优化为O(n^2) 1.四边形不等式 a<b<=c<d f(a,c)+f(b,d)<=f(b,c)+f(a,d)交叉小于包含 则对于i<i+1<=j<j+1 f(i,j)+f(i+1,j+1)<…
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\right]$中的最小值/最大值/和值 然后有这样的转移: $dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k-1\right]+dp\left[k\right]\left[j\right]+w\left(i,j\righ…
题目大意 将N个数分成M部分,使每部分的最大值与最小值平方差的和最小. 思路 首先肯定要将数列排序,每部分一定是取连续的一段,于是就有了方程 $\Large f(i,j)=min(f(i-1,k-1)+(a_j-a_k)^2)$ 其中$f(i,j)$表示前$j$个数分成$i$部分的最小值 解法一.四边形不等式优化 设$w(i,j)=(a_j-a_i)^2$ 方程变为$f(i,j)=min(f(i-1,k-1)+w(k,j))$ 很容易想到四边形不等式优化 证明w满足四边形不等式 $w(i,j)-…
形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w[a][d]+w[b][c](a\;\leq\;b<c\;\leq\;d)$ ②区间包含关系单调:$w[i+1][j]\;\leq\;w[i][j]\;\leq\;w[i][j+1]$ 则$f[\;][\;]$也满足四边形不等式. 记使$f[i][j]$最小的$k$为$g[i][j]$,则$g[i]…
1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \Div(\varrho\bbu\otimes \bbu) -\mu\lap \bbu -(\lambda+\mu)\n\Div\bbu +\n \varrho^\gamma =\varrho\bbf+\bbg. \ea\right. \eee$$ 2. 假设  先作一些初步的假设: 2.1. $\d…