【题解】最长递增路径 [51nod1274]】的更多相关文章

[题解]最长递增路径 [51nod1274] 传送门:最长递增路径 \([51nod1274]\) [题目描述] 一个可能有自环有重边的无向图,每条边都有边权.输入两个整数 \(n,m\) 表示一共 \(n\) 个点,\(m\) 条边并且给出 \(m\) 条边的信息:连接点 \(x,y\),边权为 \(w\).你可以从任何点出发,任何点结束,可以经过同一个点任意次,但是同一条边不能经过多次,并且你走过的路必须满足所有边的权值严格单调递增,求最长能经过多少条边. 以此图为例,最长的路径是: \(3…
将边排序后dp一下就可以了. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) memset(x,c,sizeof(…
Given an integer matrix, find the length of the longest increasing path. From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed). E…
Given an integer matrix, find the length of the longest increasing path. From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed). E…
矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: 输入: nums = [ [9,9,4], [6,6,8], [2,1,1] ] 输出: 4 解释: 最长递增路径为 [1, 2, 6, 9]. 示例 2: 输入: nums = [ [3,4,5], [3,2,6], [2,2,1] ] 输出: 4 解释: 最长递增路径是 [3, 4, 5, 6].注意不允…
Leetcode之深度优先搜索(DFS)专题-329. 矩阵中的最长递增路径(Longest Increasing Path in a Matrix) 深度优先搜索的解题详细介绍,点击 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: 输入: nums = [ [9,9,4], [6,6,8], [2,1,1] ] 输出: 4 解释: 最长递增路径为 [1, 2, 6, 9].…
题目要求: 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例: 输入: nums = [ [9,9,4], [6,6,8], [2,1,1]] 输出: 4 解释: 最长递增路径为 [1, 2, 6, 9]. class Solution { public: int dx[5] = {-1, 0, 1, 0}; int dy[5] = {0, 1, 0, -1}; int longest…
329. 矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: 输入: nums = [ [9,9,4], [6,6,8], [2,1,1] ] 输出: 4 解释: 最长递增路径为 [1, 2, 6, 9]. 示例 2: 输入: nums = [ [3,4,5], [3,2,6], [2,2,1] ] 输出: 4 解释: 最长递增路径是 [3, 4, 5, 6]…
一个无向图,可能有自环,有重边,每条边有一个边权.你可以从任何点出发,任何点结束,可以经过同一个点任意次.但是不能经过同一条边2次,并且你走过的路必须满足所有边的权值严格单调递增,求最长能经过多少条边.     以此图为例,最长的路径是: 3 -> 1 -> 2 -> 3 -> 2 或 3 -> 1 -> 2 -> 3 -> 4 长度为4. Input第1行:2个数N, M,N为节点的数量,M为边的数量(1 <= N <= 50000, 0 &l…
题面 解析 这题一眼DP啊. 然而想了半天毫无思路. 后来看题解后发现可以按边权的大小顺序DP. 将边权从小到大排序,对于权值相同的边分为一组. 设\(f[i][0]\)表示经过当前权值的边后到达\(i\)的最长路, \(f[i][1]\)表示经过之前的权值的边后到达\(i\)的最长路. 那么对于一条边\(x,y\), \(f[x][0]=max(f[x][0],f[y][1]+1\)), \(f[y][0]=max(f[y][0],f[x][1]+1\)). 在处理完每组边后用\(f[i][0…
一开始自己想了一种跑的巨慢..写了题解的做法又跑的巨快..一脸懵逼 显然要求边权递增就不可能经过重复的边了,那么设f[i]为第i条边出发能走多远就好了,这是我一开始的写法,可能dfs冗余状态较多,跑的极慢 #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include…
Given an integer matrix, find the length of the longest increasing path.From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).Exa…
1.最长递增子序列模板poj2533(时间复杂度O(n*n)) #include<iostream> #include<stdio.h> #include<string.h> using namespace std; int dp[1005],a[1005]; int main() { int n; while(scanf("%d",&n)>0) { for(int i=1;i<=n;i++) scanf("%d&quo…
  Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, seq…
数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0 4},1 3 4,1 2 4均为A的LIS.给出数组A,求A的LIS有多少个.由于数量很大,输出Mod 1000000007的结果即可.相同的数字在不同的位置,算作不同的,例如 {1 1 2} 答案为2. Input 第1行:1个数N,表示数组的长度.(1 <= N <…
O(n2)显然超时.网上找的题解都是用奇怪的姿势写看不懂TAT.然后自己YY.要求a[i]之前最大的是多少且最大的有多少个.那么线段树维护两个值,一个是当前区间的最大值一个是当前区间最大值的数量那么我们可以做到O(logn)查询最大值和更新. 不过树状数组一直不怎么会用... #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std;…
题目:http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11313 湖师大的比赛,见我的另一篇水题题解,这里要说的是我YY出来的C题,无重复元素序列的最长公共子序列. 用常规的做法会超时,于是我YY出来一个方法,记录第一组各个数字的位置,读取第二组,把第一组出现的相同数字的位置放入序列,没出现就不放...然后就转成LIS题目了... 具体用例子来说明下,比如两个序列 3 2 1 5 4 2 1 5 4 3 很明显,LCS…
一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm.求最大的m值. 比如int* inp = {9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2}: 二,解决: 1.用一个临时数组tmp保存这样一种状态:tmp[i]表示以i为终点的递增序列的长度: 比如inp =…
题目描述 给定正整数序列 \(x_1 \sim x_n\) ,以下递增子序列均为非严格递增. 计算其最长递增子序列的长度 \(s\) . 计算从给定的序列中最多可取出多少个长度为 \(s\) 的递增子序列. 如果允许在取出的序列中多次使用 \(x_1\) 和 \(x_n\) ,则从给定序列中最多可取出多少个长度为 \(s\) 的递增子序列. 输入格式 文件第 \(1\) 行有 \(1\) 个正整数 \(n\) ,表示给定序列的长度.接下来的 \(1\) 行有 \(n\) 个正整数 \(x_1 \…
51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它开头的LIS长度 - 1 = n,那么这个元素可能在LIS中. 那么什么时候它一定在呢?就是它在LIS中的位置"无可替代"的时候,即:设以它结尾的LIS长度为x,以任何其它元素(不可能在LIS中的元素除外)结尾的LIS长度均不为x. 然后就做出来了! #include <cstdio…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个.例如A为:{1 3 2 0…
«问题描述:给定正整数序列x1,..., xn.(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 注意:这里的最长递增子序列即最长不下降子序列!!!«编程任务:设计有效算法完成(1)(2)(3)提出的计算任务.«数据输入:由文件alis.in提供输入数据.文件第1 行有1个正整数n(n<=500),表示给定序列的长度.接下来的1 行有n个正整数x1…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 题解:先要确定这些点是不是属于最长递增序列然后再确定这些数在最长递增序列中出现的次数,如果大于1次显然是可能出现只出现1次肯定是必然出现.那么就是怎么判断是不是属于最长递增序列,这个只要顺着求一下最长递增标一下该点属于长度几然后再逆着求一下最长递减标一下该点属于长度几如果两个下标之和等于最长长度+1那么该点就属于最长递增序列,然后就是求1-len(le…
#include <iostream> #include <limits.h> #include <vector> #include <algorithm> using namespace std; //获取最长递增子序列的递增数组 vector<int> getdp1(vector<int> arr) { vector<int> dp(arr.size()); for (int i = 0; i < int(arr…
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长公共路径. 解析 这个题,怎么说呢,对我来说思维难度还是比较低的,但是代码难度…
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列. 考虑最长公共子序列问题如何分解成…
1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答     本期主要从动态规划和二分法两个方向来求解最长递增子序列问题. 3.1 动态规划求解最长递增子序列     先介绍时间复杂度为O(N^2^)的方法,具体过程如下: 生成数组dp,dp[i]表示在以arr[i]这个数结尾的情况下,arr[0-i]中的最大递增子序列长度. 对第一个数arr[0]来说,令d…
题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长递增子序列的长度. 额外加一个ends[]数组,初始化ends[0]=arr[0],其他为0.有一个有效区ends[0,r],只有有效区内的数才有意义.ends[i]=num表示遍历到目前,所有长度i+1的递增序列中,结尾最小的数时num. 遍历arr[i]时,在ends有效区找最左边>=arr[i…
代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 //题解: 6 //很明显前面最长递增序列的长度会影响到后面判断,而且还要注意我们要采用哪种求最长递增序列的方式(一共有两种, 7 //一种复杂度为nlog(n),另一种是n^2),这里我才采用的是nlog(n)的. 8 // 9 //算法思想: 10 //定义d[k]: 11 //长度为k的上升子序列…
今天在LeetCode刷每日一题,遇到了388. 文件的最长绝对路径的思路,这道题让我想到了系统的目录是栈结构,果然在题解中找到了栈的解法(暴力半天没出来,跑去看题解了QWQ). 所以我就捎带复习了一下go语言中栈的实现,然后把这道题给理解一下 go语言栈的实现 较为简单的实现(通过切片和内置函数) func main() { // int类型的栈 stack := make([]int,10) // 压栈 eg.压入1 stack = append(stack,1) // 出栈 stack =…