两个重点: 一.举个例子,如果建立一个图像识别的数据集,你的训练集和你的训练验证集是从网上爬下来的(也就是说这些图片的大小.像素.后期制作都可能很精美),你真正的测试集是用户的手机上传(不同的手机.环境.光线.时间等等会造成不同的效果) 这两个集合必定不是同分布的,虽然在transfer learning中我们鼓励这种研究方式,但是在单个模型的训练中,不管你的模型建立的多么好,从这个数据集建立开始的那一刻起就注定了你的结果不会很好.所以,在建立自己的数据集时,必须保证同分布的条件,当然这很困难,…
本节内容:   面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法.     引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍打狗, 狗可以咬人,怎么描述这种不同的角色和他们的功能呢?   你搜罗了自己掌握的所有技能,写出了下面的代码来描述这两个角色 +? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15…
一.VOC数据集的简介 PASCAL VOC为图像的识别和分类提供了一整套标准化的优秀数据集,基本上就是目标检测数据集的模板.现在有VOC2007,VOC2012.主要有20个类.而现在主要的模型评估就是建立在VOC数据集和COCO数据集上(80个类),其指标主要是mAP和fps(帧率). VOC数据集有五个文件夹 ├── Annotations              # 存放xml文件,主要是记录标记框位置信息 ├── ImageSets                # 存放的都是txt…
本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configparser hashlib subprocess logging模块 re正则表达式 模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.p…
Day6的主要内容是: configparser模块 shutil模块 subprocess模块 处理xml的模块 1.configparser模块 #! /usr/bin/env python # -*- coding: utf-8 -*- # __author__ = "Q1mi" """ configparser 练习 """ import configparser # 写一个配置文件 config = configpa…
这篇文章写的不错,转来收了 转自:http://www.cnblogs.com/alex3714/articles/5188179.html   本节内容:   面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法.   引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍打狗, 狗可以咬人,怎么描述这种不同的角色和他们的功能呢?…
  本节内容:   面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法.     引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍打狗, 狗可以咬人,怎么描述这种不同的角色和他们的功能呢?   你搜罗了自己掌握的所有技能,写出了下面的代码来描述这两个角色 + 上面两个方法相当于造了两个模子,游戏开始,你得生成一个人和狗的实际对…
大纲: 1.反射 其中的方法:getattr,delattr,setattr,hasattr __import__() __import__() 注意事项 2.模块中的特殊变量 __doc__ __cached__ __file__ __name__ __package__ 3.sys模块 进度条 4.os模块 反射 利用字符串的形式去对象(模块)中操作(寻找/检查/删除/设置)成员(函数),反射 用到的方法:getattr,delattr,setattr,hasattr 用了一个伪造web框架…
开源框架与迁移 上面介绍了一些已经取得很好成绩的CNN框架,我们可以直接从GitHub上下载这些神经网络的结构和已经在ImageNet等数据集上训练好的权重超参数. 在应用于我们自己的数据时. 1.如果我们的数据集很小,我们可以采用对原框架和权重都保持不变,只更改最后的output层实现迁移. 2.如果我们的数据集大小中等,可以尝试冻结原框架的前面多层,对其后的层数进行更改. 3.如果我们的数据集很大,可以在原架构上尝试新的训练,不采用预训练的权重,还可以自行更改模型,做更多的尝试. CNN中的…
在传统的数据处理系统或学习系统中,有一些工作需要多个步骤进行,但是端到端的学习就是用一个神经网络来代替中间所有的过程. 举个例子,在语音识别中: X(Audio)----------MFCC---------->features----------ML---------->phonemes--------->words-------------->Y(transcript) 首先输入音频,使用MFCC提取低层次特征,使用机器学习的方法得到音位(声音最小划分),转化为单词,最后形成文…