51nod 1222 莫比乌斯反演】的更多相关文章

思路: yhx找的反演题 题解已经烂大街了 #pragma GCC optimize("O3") //By SiriusRen #include <bits/stdc++.h> using namespace std; typedef long long ll; ],prime[],vis[],tot; void init(){ mu[]=; ;i<=;i++){ ; ;j<=tot&&i*prime[j]<=;j++){ vis[i*pr…
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k)  \sum_{d}    \sum_{i} \s…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{n}[gcd(i,j)==d]d \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{\left…
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i=1∑n​j=1∑n​(i,j) mod (1e9+7)n<=1010 题目分析 乍一看十分像裸莫比乌斯反演,然而nnn的范围让人望而却步 于是先变化一下式子 Ans=∑i=1n∑j=1n(i,j)Ans=\sum_{i=1}^n\sum_{j=1}^n(i,j)Ans=i=1∑n​j=1∑n​(i,j…
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum_{x|i}\sum_{y|j}[(x,y)==1]x\cdot \frac{j}{y}\) 证明的话可以自己意会 赶时间. 然后 这道题唯一特别的是转换完后 直接莽推根号做法是行不通的 同时也过不去. 不如先考虑求 \(f_i=\sum_{j=1}^i s(i\cdot j)\) 然后带入上面的那…
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了. 考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌斯反演函数: void Init() { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0;…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的莫比乌斯反演式子并没有除法- 本脑子有坑选手的做法:20101009是一个质数,而且n和m的范围小于20101009,这一定有其原因.经过仔细思考,我们发现这保证了每个1~n的数都有mod20101009意义下的乘法逆元.用inv[x]表示x的逆元,我们发现原先的式子等于sigma{inv[gcd(i,j)]…
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积性函数前缀和的方法,学习参考博客:http://blog.csdn.net/skywalkert/article/details/50500009  要好好看大神的博客哦orz 用筛法预处理前N^(2/3)项,后面的记忆化搜索解决. 不太会用哈希,就用map记忆化一下: #include<cstdi…
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int miu(int n){ int i, cnt; ;//质因子个数…
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i){ if (notp[i]==0){ p[++pcnt]=i; mu[i]=-1; } for (int j=1,t=p[j]*i;j<=pcnt&&t<=n;++j,t=p[j]*i){ notp[t]=1; if (i%p[j]==0){ mu[i]=0; break; }e…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include <cmath> #include <cstdio> using namespace std; #define LL long long #define MMX 50010 int mu[MMX],msum[MMX]; LL n; bool check[MMX]; int prime[MM…
Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 300    Accepted Submission(s): 124 Problem Description WLD likes playing with codes.One day he is writing a function.Howerver,his computer b…
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个倍数. 第一行两个数:p和q.(1<p<10^7 ,1<q<1000.) 接下来有q行,每行两个数A和B.(1<A,B<10^7) 我们先考虑第二个问题 ,很简单答案就是 (A/p) * (B/p) , 因为从p开…
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的(x,y)的对数,显然F(x)=[nx]∗[mx]. 设f(x)为gcd(x,y)=x的对数. 因为F(x)=∑i|xf(i),所以我们可以莫比乌斯反演它. 根据公式f(x)=∑x|dμ(d)F(d) 我们的目标就是f(1)(因为n和m都可以除以k) 所以我们就可以在O(n)的时间复杂度内求出答案了. #in…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4291    Accepted Submission(s): 1502 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 718 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,…
4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discuss] Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. Output 如题 Sample Input 1 23 3 Sample Outpu…
莫比乌斯反演:可参考论文:<POI XIV Stage.1 <Queries>解题报告By Kwc-Oliver> 求莫比乌斯函数mu[i]:(kuangbin模板) http://www.cnblogs.com/kuangbin/archive/2013/08/21/3273440.html void Moblus() { memset(check,false,sizeof(check)); mu[] = ; ; ; i <= MMX; i++) { if( !check[…
GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)     …
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible…
CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 This problem is so easy! Can you solve it? You are given a sequence which contains n integers a1,a2……an, your task is to find how many pair(ai, aj)(i < j) that ai and aj is co-prime.   输入 There are mu…
在你以为理解mobus的时候,苦苦想通过化简公式来降低复杂度时,这题又打了我一巴掌. 看来我并没有理解到acmicpc比赛的宗旨啊. 这么多次查询可以考虑离线操作,使用树状数组单点更新. /************************************************************** Problem: 3529 User: chenhuan001 Language: C++ Result: Accepted Time:5264 ms Memory:8412 kb *…
又是一道经典题. 1.学习了下O(n) 的做法. // // main.cpp // bzoj2154 // // Created by New_Life on 16/7/7. // Copyright © 2016年 chenhuan001. All rights reserved. // #include <iostream> #include <string.h> #include <stdio.h> using namespace std; #define N…
题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 容斥原理的思想,首先考虑所有数都属于非平方数 那么就是x 然后对于每一个平方数都要减去,但是这里应该只考虑质数的平方数就可以了 那么就扩展为x - x/(2^2) - x/(3^2) - x/(k^2).... 然后因为中间存在重复减的那么要加回来 -> x - x/(2^2) - x/(3^3) …