Spark SQL CLI 实现分析】的更多相关文章

背景 本文主要介绍了Spark SQL里眼下的CLI实现,代码之后肯定会有不少变动,所以我关注的是比較核心的逻辑.主要是对照了Hive CLI的实现方式,比較Spark SQL在哪块地方做了改动,哪些地方与Hive CLI是保持一致的.可以先看下总结一节里的内容. Spark SQL的hive-thriftserver项目里是其CLI实现代码.以下先说明Hive CLI的主要实现类和关系,再说明Spark SQL CLI的做法. Hive CLI 核心启动类是org.apache.hive.se…
Spark SQL CLI描述 Spark SQL CLI的引入使得在SparkSQL中通过hive metastore就可以直接对hive进行查询更加方便:当前版本中还不能使用Spark SQL CLI与ThriftServer进行交互. 使用Spark SQL CLI前需要注意: 1.将hive-site.xml配置文件拷贝到$SPARK_HOME/conf目录下: 2.需要在$SPARK_HOME/conf/spark-env.sh中的SPARK_CLASSPATH添加jdbc驱动的jar…
上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External DataSource使用篇地址:Spark SQL之External DataSource外部数据源(一)示例 http://blog.csdn.net/oopsoom/article/details/42061077) 一.Sources包核心 Spark SQL在Spark1.2中提供了External…
/** Spark SQL源码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式. 一.引子 本例使用hive console里查询cache后的src表. select value from src 当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用…
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效率. 这就涉及到内存中的数据的存储形式,我们知道基于关系型的数据可以存储为基于行存储结构 或 者基于列存储结构,或者基于行和列的混合存储,即Row Based Storage.Column Based Storage. PAX Storage. Spark SQL 的内存数据是如何组织的? Spar…
/** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: 我们都知道一段sql,真正的执行是当你调用它的collect()方法才会执行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包含4种操作类型,即BasicOperator基本类型,还…
/** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,而且发展速度异常迅猛,究其原因,个人认为有以下2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样可以应用于多种任务,流处理,批处理,包括机器学习里都可以引入Sql.    2.效率:因为Shark受到hive的编程模型限制,无法再继续优化来适应Spark…
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二篇 Spark SQL Catalyst源码分析之SqlParser 第三篇 Spark SQL Catalyst源码分析之Analyzer 第四篇 Spark SQL Catalyst源码分析之TreeNode Library 第五篇 Spark SQL Catalyst源码分析之Optimize…
Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行任务查询.需要注意的是,Spark SQL CLI不能与Thrift JDBC服务交互.在Spark目录下执行如下命令启动Spark SQL CLI: ./bin/spark-sql 配置Hive需要替换conf/下的hive-site.xml…
第6章 运行Spark SQL CLI Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务.需要注意的是,Spark SQL CLI不能与Thrift JDBC服务交互.在Spark目录下执行如下命令启动Spark SQL CLI: ./bin/spark-sql 配置Hive需要替换 conf/ 下的 hive-site.xml .…