Cholesky分解 平方根法】的更多相关文章

一种矩阵运算方法,又叫Cholesky分解.所谓平方根法,就是利用对称正定矩阵的三角分解得到的求解对称正定方程组的一种有效方法.它是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解.它要求矩阵的所有特征值必须大于零,故分解的下三角矩阵的对角元也是大于零的. https://en.wikipedia.org/wiki/Positive-definite_matrix In linear algebra, a symmetric {\displaystyle n} × {\displa…
    接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解.这些分解的来源就在于矩阵本身存在的特殊的 结构.对于矩阵A,如果没有任何的特殊结构,那么可以给出A=L*U分解,其中L是下三角矩阵且对角线全部为1,U是上三角矩阵但是对角线的值任意,将U正规化成对角线为1的矩阵,产生分解A = L*D*U, D为对角矩阵.如果A为对称矩阵,那么会产生A=L*D*L分解.如果A为正定对称矩阵,那么就会产生A=G*G,可以这…
矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的矩阵A是正定的,则A可以唯一的分解为 \[{\bf{A = L}}{{\bf{L}}^{\bf{T}}}\] 其中L是下三角矩阵.下面以三维矩阵进行简单说明: \[\begin{array}{ccccc}{\bf{A = L}}{{\bf{L}}^{\bf{T}}}{\rm{ = }} & \lef…
Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和…
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\(A∈R^{n×n}\)默认是方阵,因为只有方阵才能计算行列式. 行列式如何计算的就不在这里赘述了,下面简要给出行列式的各种性质和定理. 定理1:当且仅当一个方阵的行列式不为0,则该方阵可逆. 定理2:方阵\(A\)的行列式可沿着某一行或某一列的元素展开,形式如下: 沿着第\(i\)行展开:\[de…
一,要解决的问题 选用合适的算法,求解三种线性方程组:一般线性方程组,对称正定方程组,三对角线性方程组. 方程略. 二,数值方法 1,使用Guass列主元消去法求解一般线性方程组. Guass列主元是为了防止Guass消去法中大数吃掉小数而引出的一种线性方程组求解方法,消元时选用一列中绝对值最大的元素作为列主元素. 算法伪代码: 消元过程 回代过程 2,使用平方根法求解对称正定方程组 平方根法.它把系数矩阵(对称正定矩阵)表示成一个下三角矩阵L和其转置的乘积的分解.这样的分解又称为Cholesk…
    从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在于将矩阵转化成正交矩阵和上三角矩阵的乘积,对应的分解公式是A=Q*R.正交矩阵有很多良好的性质,比如矩阵的逆和矩阵的转置相同,任意一个向量和正交矩阵的乘积不改变向量的2范数等等.QR分解可以用于求解线性方程组,线性拟合.更重要的是QR分解是QR算法的基础,可以用于各种特征值问题,所以QR分集的应用非…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
若一个矩阵A是正定的,那么该矩阵也可以唯一分解为\[{\bf{A = LD}}{{\bf{L}}^{\bf{T}}}\] 其中L是对角元素都为1的下三角矩阵,D是对角元素都为正数的对角矩阵.还是以三维矩阵进行简单说明 \[{\bf{A = LD}}{{\bf{L}}^{\bf{T}}} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{{L_{21}}}&1&0\\{{L_{31}}}&{{L_{32}}}&1\end{arr…
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着重要的作用. 平面旋转 设 \(1 \leqslant i < j \leqslant n\),称 为平面旋转或者 Givens 旋转. 容易验证对任何一对指数 \(i,j,(1 \leqslant i < j \leqslant n)\) 以及任何参数 \(\theta \in [0,2\pi)…