polya burnside 专题】的更多相关文章

polya题目:uva 11077 Find the Permutationsuva 10294 Arif in DhakaLA 3641 Leonardo's Notebookuva 11077 Find the PermutationsHOJ 2084 The Colored CubesHOJ 2647 Megaminx POJ 1286 Necklace of BeadsPOJ 2409 Let it BeadTOJ 2795 The Queen's New NecklacesHDU 18…
参考链接: http://www.cnblogs.com/hankers/archive/2012/08/03/2622231.html http://blog.csdn.net/raalghul/article/details/51767941 首先来说说burnside引理是什么. 一天你正在刷题,看到一道关于染色的问题,你认为是一个傻逼题,然后认真一看题目上面写着旋转.翻转后相同的计算一次......你立刻就傻眼了. 接下来是科普时间. 首先我们考虑什么东西叫置换,例如(1,2,3,4,5…
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用> --陈瑜希 burnside: $$等价类的个数=\frac{1}{|G|}\sum_{i=1}^{s}D(a_i), a_i \in G$$其中$D(a_i)=a_i置换中染色后不变的方案$ 而polya: $$D(a_i)=k^{C(a_i)},其中C(a_i)是a_i的循环节个数$$证明很简单…
也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有多少种本质不同的染色方式,本质不同的两种染色方式必须旋转不能互相得到. 输入方式: 第一行 \(t,\)表示t组数据 接下来\(t\)组数据: 每组数据第一行为\(n,m,k\) 接下来\(k\)行,每行两个数\(x,y\)表示不允许\(x,y\)颜色连在一起. 答案对9973取模 \((1 ≤ n…
目录 笔记整理 计划 要学的东西 缺省源 要做的题 搜索 高斯消元 矩阵 排列组合 2019.7.9 2019.7.10 kmp ac自动机 2019.7.11 2019.7.15 笔记整理 1.同余and乘法逆元学习笔记 2.排列组合学习笔记 3.字符串Hash学习笔记 4.树状数组学习笔记 5.线段树学习笔记 6.ST表学习笔记 7.树形DP学习笔记 8.位运算学习笔记 9.二分答案学习笔记 还没写 ,咕咕咕 10.区间dp学习笔记 待更新例题 11.背包问题 12.STL学习笔记 13.字…
POJ 2409 Let it Bead 这题就是polya公式的直接套用,唯一麻烦的是置换群的种类数,由于可以翻转,所以除了要加上pow(c,gcd(s,i))这些平面旋转的置换群,还要加上翻转的.由于翻转的情况奇偶是不同的,所以需要分开讨论:偶数:pow(c,(s-2)/2+2)*(s/2)+pow(c,(s/2))*(s/2);(里面包含了两个对点和两个对边的旋转) 奇数:pow(c,(s-1)/2+1)*s;(一个点和对边的旋转) #include<iostream> #include…
最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着色? 其中置换的方法有旋转 \(0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}\), 穿过一个点做对称轴进行翻转. Burnside引理的证明 那么,在解决这个问题之间,我们首先要定义和证明一些东西: 在集合\(X\)的置换群…
感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运算"$*$",并满足 (1).封闭性:$\forall a, b \in G, \exists c \in G, a * b = c$ (2).结合律:$\forall a, b, c \in G, (a * b) * c = a * (b * c)$ (3).单位元:$\exists e…
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序列循环同构,那么我们称这两个序列等价. 求两两不等价的序列个数. Burnside引理 假设有若干个置换 $P_1,P_2,\cdots$ ,设由这些置换生成的置换群为 $Q$ .如果序列 A 可以通过一个 $Q$ 中的置换变成序列 B,那么我们认为 A 和 B 等价. 对于一个置换 $P$ ,如果…
先定义几个含义和符号:起始状态/方法/位置/元素/:以染色为例,起始状态是所有的染色方案,方法是以起始状态所有染色方案为基准转变为新的染色情景的操作(如旋转),位置则必须是没有任何染色效果的抽象空间,元素则是各种颜色循环: 在方法作用下,元素在位置上形成一个首尾相接的环(且定义这些位置是等价的)迹: 在方法作用下,循环所遍及到的所有位置的集合等价关系:一个置换集合G,如果一个置换方法能把其中一个方案映射到另一个方案,则二者是等价的等价类: 满足等价关系的方案属于同一等价类,如:这里有6个等价类…