Codeforces917D. Stranger Trees】的更多相关文章

Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对于任意 \(k\in[0,n)\) 输出答案,答案取模. \(2\leq n\leq 100\) Solution 这题思路新奇啊,智商又能上线了 由于暴力为枚举所有生成树,发现枚举所有生成树的高效算法为矩阵树定理,而且数据范围恰好在矩阵树复杂度接受范围内 由于矩阵树计算的是所有 生成树边权积 之和…
$n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的部分”,可以通过把“特性”强行复制加入“整体”来考察新的整体与部分的关系. 说人话,在这里是要求完全图中与给定树有若干同样边的生成树,那尝试把这棵树复制一份进完全图再看生成树.可以发现,这样之后,新的完全图的生成树个数就是 $\sum_{i=0}^{n-1}2^i*[number \ \ of \…
CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f_k\).假设我们呢将原树上的边权设为\(x\),其他的边权设为\(1\),那么我们做一次矩阵树定理求出来的东西就是\(\displaystyle \sum_{i=0}^{n-1}f_i x^i\).于是我们找\(n\)个不同的\(x\),然后高斯消元就行了. 代码: #include<bits/s…
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出和给出的树至少有k个点相同的树的数量.我们先选出原树中的k条边,然后剩下的边随便连.选出k条边后,原树被分成n-k个连通块,设其大小分别为$siz_1,siz_2...siz_{n-k}$.那么剩下的边随便连的方案数是多少呢?我们不妨把每个连通块看成一个点,答案变成n个点的完全图的生成树个数,根据P…
题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法似乎更难想.. 我们先构造一个函数$f(x)$,表示用一个完全图和$x-1$棵原树的边,构成的生成树的方案数. 也就是说,原树的每条边复制成$x$条,不在原树的边都变成一条边,求这个图的生成树的方案数. 然后我们可以发现,这个方案数实际上就等于$\sum_{i=0}^{n-1}x^{i}*ans_{…
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边的边权设置成 \(x\) 然后构造基尔霍夫矩阵, 结果记为 \(val\) ,有 \[val=\sum_\limits{i=0}^{n-1}x^ians_i\] 其中 \(ans_i\) 表示和 \(S\) 的公共边数量为 \(i\) 的生成树的个数. 发现这是一个关于 \(x\) 的多项式,我们要…
题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了,给定一棵树,求和这棵树有\(k\)条公共边的生成树个数 我们如何区分出和原生成树有几条边呢,容斥显然不是很可做,于是之后就不会啦 看了题解发现这是神仙题,引用潮子名言我可能这辈子是做不出来了 对于不在给定生成树里的边\(w_e\)我们设\(w_e=1\),对于在生成树里的边我们将其设成\(w_e=x…
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder.com/stat?c=problem_statement&pm=13369 题解 首先分析 CF917D. 我们考虑能否将树上的边的贡献特殊表现出来. 记原树为 \(T\),我们构造一幅 \(n\) 个结点的无向完全图,并设置一个值 \(x\),对于无向边 \((u, v)\),其权值 \(w_{…
题目链接:洛谷 题目大意:给定一个$n$个节点的树$T$,令$ans_k=\sum_{T'}[|T\cap T'|=k]$,即有$k$条边重合.输出$ans_0,ans_1,\ldots,ans_{n-1}$. 数据范围:$1\leq n\leq 100$ 这题的思路挺巧妙的,非常不错. 我们将$T$上的边的边权作为$x$,不在$T$上的边的边权设为$1$(一个完全图),然后用矩阵树定理算出所有生成树的边权之积之和,也就是$x^k$的系数就是$ans_k$,现在我们要求这个多项式. 但是运算一个…
生成树计数问题用矩阵树定理来考虑. 矩阵树定理求得的为\(\sum\limits_T\prod\limits_{e\in T}v_e\),也就是所有生成树的边权积的和. 这题边是不带权的,应用矩阵树定理前,我们必须考虑给每条边赋上一个权值. 可以从多项式的角度来考虑解决生成树和给定树有\(k\)条边重复这一条件,将给定树的边边权赋为\(x\),其余边赋为\(1\),那么应用矩阵树定理后得到的多项式中第\(k\)次项\(x^k\)的系数即为恰好有\(k\)条边重复的方案数. 发现直接代入多项式来求…
Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( 跑题了跑题了-- 这里提供两种解法: Algorithm 1. 注意到"恰好"二字有点蓝瘦,因此套路地想到二项式反演,也就说我们钦定 \(k\) 条边必须与原树中的边重合,其余边可以随便连的方案数,我们假设这些与原树中的边重合的边构成的集合为 \(E'\),那么 \(E'\) 中显然包含…
\(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点的有标号树,求与这棵树重合恰好 \(0,1,\cdots,n-1\) 条边的树的个数,对 \(10^9+7\) 取模.   \(n\le100\). \(\mathcal{Solution}\) \(\mathcal{Case~1}\)   考虑把"是否是原树上的边"看做一种权值,相当于求完全图的生成树.具体地,令完全图中,原树有的边的权值为 \(1\),否则为 \(x\),用多项式暴…
C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达式树 调试 简介 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 x < y 这样的二元运算等. 你可以对表达式树中的代码进行编辑和运算.这样能够动态修改可执行代码.在不同数据库中执行 LINQ 查询以及创建动态查询.  表达式树还能用于动态语言运行时 (DLR) 以提…
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看到多少个点. 知识点: 容斥原理:(容许) 先不考虑重叠的情况,把包含于某条件中的所有对象的数目先计算出来,(排斥)然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复. 公式:          奇加偶减 一般求互质个数若用欧拉函数不好解决,则从反面考虑,用容斥. 模板: void…
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write…
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For example,Given n = 3, there are a total of 5 unique BST's. 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 这道题实际上是Catalan Number卡塔兰数的一个例子,如果对卡塔兰数不熟悉的童鞋可能真…
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For example,Given n = 3, your program should return all 5 unique BST's shown below. 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 confused what "{1,#,2…
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For example, Given n = 3, your program should return all 5 unique BST's shown below. 1               3            3             2             1 \          …
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a functional representation of persistent sequences supporting access to the ends in amortized constant time, and concatenation and splitting in time logarithmi…
今天有同事问我下面这段代码是什么意思: var MyClass = function() { events.EventEmitter.call(this); // 这行是什么意思? }; util.inherits(MyClass, events.EventEmitter); // 还有这行? 我也不是很明白,于是研究了一下.下面是我的一些体会. Christmas Trees和Errors 如果你写过JavaScript或NodeJS代码,你也许会对callback地狱深有体会.每次当你进行异…
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For example, given n = 3, there are a total of 5 unique BST's. 1         3     3      2      1     \       /     /      / \      \      3     2     1      1  …
4月份很快就过半了,最近都在看WPF,有点落伍了...本来想写一点读书笔记的,还没想好要怎么写.所以为了能够达到每月一篇博客的目标,今天先说一个LeetCode上的面试题:Unique Binary Search Trees. 题目简单翻译过来就是说: 给定n个不同节点,问:可以构造出多少种异构的二叉搜索树.比方说n=3时有5种: 3          3       3       2       1     \        /       /       /  \       \     …
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For example,Given n = 3, there are a total of 5 unique BST's. 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 Tree Dynamic Programming     如果集合为空,只有一种BST,即空树…
经常碰到要存一堆的string, 这个时候可以用hash tables, 虽然hash tables 查找很快,但是hash tables不能表现出字符串之间的联系.可以用binary search tree, 但是查询速度不是很理想. 可以用trie, 不过trie会浪费很多空间(当然你也可以用二个数组实现也比较省空间). 所以这里Ternary Search trees 有trie的查询速度快的优点,以及binary search tree省空间的优点. 实现一个12个单词的查找 这个是用二…
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered wit…
Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For example,Given n = 3, your program should return all 5 unique BST's shown below. 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \…
本题利用BST的特性来用DP求解.由于BST的性质,所以root左子树的node全部<root.而右子树的node全部>root. 左子树 = [1, j-1], root = j, 右子树 = [j+1, n] dp[n] = sum(dp[j - 1] * dp[n - j - 1]) def numTrees(self, n): """ :type n: int :rtype: int """ dp = [0]*(n+1) dp…
Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3243 Accepted: 2113 Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In orde…
Given two Binary Search Trees, find common nodes in them. In other words, find intersection of two BSTs. Example: from: http://www.geeksforgeeks.org/print-common-nodes-in-two-binary-search-trees/ Method 1 (Simple Solution) A simple way is to one by o…
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write…