hdu1588:Gauss Fibonacci】的更多相关文章

对每个0<=i<n求f(g(i))的和,其中f(x)为斐波那契数列第x项,g(i)=k*i+b,k,b,n给定,模数给定. 斐波那契数有一种用矩阵乘法求的方法,这个矩阵A自己写,令F[i]为i和i+1的那个矩阵,F[i]=A^b*F[0],然后答案要求F[b]+F[k+b]+F[k*2+b]+……=(A^b+A^(k+b)+A^(2k+b)+……)*F[0]=(E+A^k+……+A^k^(n-1))*A^b*F[0]的[2,1]项.上面括号里就令B=A^k求E+B+B^2+……+B^(n-1)…
http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an…
题目:Matrix Power Series 传送门:http://poj.org/problem?id=3233 分析: 方法一:引用Matrix67大佬的矩阵十题:这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:$ S(6)= A + A^2 + A^3 + A^4 + A^5 + A^6 =\underline{(A + A^2 + A^3)} + A^3*\underline{(A + A^2 + A^3)}.…
Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Prob…
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析:  把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1…
第 19 题(数组.递归):题目:定义 Fibonacci 数列如下:/ 0 n=0f(n)= 1 n=1/ f(n-1)+f(n-2) n=2输入 n,用最快的方法求该数列的第 n 项. 思路:递归和非递归的 下面的代码有个问题,没有考虑大数越界.返回值应该设成long long型的 递归速度非常慢 /* 第 19 题(数组.递归): 题目:定义 Fibonacci 数列如下: / 0 n=0 f(n)= 1 n=1 / f(n-1)+f(n-2) n=2 输入 n,用最快的方法求该数列的第…
[项目:求Fibonacci数列] Fibonacci数列在计算科学.经济学等领域中广泛使用,其特点是:第一.二个数是1,从第3个数開始,每一个数是其前两个数之和.据此,这个数列为:1 1 2 3 5 8 13 21 34 55 89 --.请设计程序,输出这个数列,直到这个数字超过10000. [提示]数列能够表示为: {f1=f2=1fn=fn−1+fn−2,n>2 [參考解答] #include <iostream> using namespace std; int main( )…
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 27    Accepted Submission(s): 5 Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a ve…
这是个开心的题目,因为既可以自己翻译,代码又好写ヾ(๑╹◡╹)ノ" The i’th Fibonacci number f(i) is recursively defined in the following way: • f(0) = 0 and f(1) = 1 • f(i + 2) = f(i + 1) + f(i) for every i ≥ 0 Your task is to compute some values of this sequence. Input Input begins…
[题目链接] 点击打开链接 [算法] 要求 f(g(0)) + f(g(1)) + f(g(2)) + ... + f(g(n-1)) 因为g(i) = k * i + b 所以原式 = f(b) + f(k+b) + f(2k+b) + .... + f((n-1)k+b) 令矩阵A = {1,1,0,1}(求斐波那契数的矩阵) 那么,式子就可以写成A^b + A^(k + b) + A ^ (2k + b) + .... + A ^ ((n - 1)k + b) 因为矩阵符合乘法分配律,所以…