Lipschitz连续【zz】】的更多相关文章

转载地址:http://moosewoler.blog.163.com/blog/static/6986605201242643122296/ 李普希兹连续是以德国数学家Rudolf Lipschitz的名字命名的. 李普希兹连续是比一致连续更强的连续性条件.从直观上看,连续(或一致连续)要求自变量x发生改变的时候,因变量y不可发生突变(用δ和ε限定):而李普希兹连续更加限定了δ和ε的关系为一常数,即ε/δ=K>0. 维基百科上用这个图来直观的说明李普希兹连续. 图中两个白色对顶三角形由两条直线…
EMD(earth mover distance)距离: 在计算机科学与技术中,地球移动距离(EMD)是一种在D区域两个概率分布距离的度量,就是被熟知的Wasserstein度量标准.不正式的说,如果两个分布被看作在D区域上两种不同方式堆积一定数量的山堆,那么EMD就是把一堆变成另一堆所需要移动单位小块最小的距离之和. 上述的定义如果两个分布有着同样的整体(粗浅的说,就像两个堆有着同样的数量),在规范化的直方图或者概率密度函数上.在这基础上,EMD等同于两个分布的第一Mallows距离或者第一W…
连续(Continuity) 所有点连续   ->   一致连续 (uniform continuity)  ->  绝对连续  -> 李普希兹连续(Lipschitz) 弱                    ---->               强 [uniform continutity] In mathematics, a function f is uniformly continuous if, roughly speaking, it is possible to…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说学习概率分布,典型的思维是学习一个概率密度.这通常是通过定义一个概率密度的参数化族\((P_{\theta})_{\theta\in R^d}\),然后基于样本最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\underset{\thet…
0. introduction GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document processing两方面,包含图片.视频.诗歌.一些简单对话的生成等.由于文字在高维空间上不连续的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如图像的处理得心应手,并且从本质上讲,图片处理相较于NLP更为简单(因为任何动物都可以处理图像,但只有人类可以…
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文<Wasserstein GAN>却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢? 要知道自从2014年Ian Goodfellow提出以来,GAN就存在着训练困难.生成器和判别器的loss无法指示训练进程.生成样本缺乏多样性等问题.从那时起,很多论文都在尝试解决,但是效果不尽人意,比如最有名的一个改进DCGAN依靠的是对判…
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文<Wasserstein GAN>却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢? 要知道自从2014年Ian Goodfellow提出以来,GAN就存在着训练困难.生成器和判别器的loss无法指示训练进程.生成样本缺乏多样性等问题.从那时起,很多论文都在尝试解决,但是效果不尽人意,比如最有名的一个改进DCGAN依靠的是对判…
深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc 百家号17-05-2902:02 导语 这次的内容主要是想梳理 GAN 从 NIPS 2014 被提出,到 2017年5月,都有哪些重要的从原理和方法上的重要研究.一共覆盖了25篇重要论文(论文列表见本文最下方). 引言:GAN的惊艳应用 首先来看看 GAN 现在能做到哪些惊艳的事呢? GAN 可以被用…
数值计算 机器学习算法通常需要大量的数值计算.这通常是指通过迭代过程更新解的估计值来解决数学问题的算法,而不是通过解析过程推导出公式来提供正确解的方法.常见的操作包括优化(找到最小化或最大化函数值的参数)和线性方程组的求解. 上溢和下溢 连续数学在数字计算机上的根本困难是,我们需要通过有限数量的位模式来表示无限多的实数.这意味着我们在计算机中表示实数时,几乎总会引入一些近似误差.在许多情况下,这仅仅是舍入误差.舍入误差会导致一些问题,特别是当许多操作复合时,即使是理论上可行的算法,如果在设计时没…