原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000.这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了.前三条网上解释比较…
https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000.这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了.前三条网上解释比较多,后面…
转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000.这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了.前三条网上解释比较多,后面的两条我看了很多paper,才得出这些结论. 为什么要边框回归? 什么是边框回归? 边框回归怎么做的?…
[转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好,https://blog.csdn.net/zijin0802034/article/details/77685438…
https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出. fast rcnn中SoftmaxLoss代替了SVM,证明了softmax比SVM更好的效果,SmoothL1Loss取代Bouding box回归.将分类…
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,IoU是最流行的评价准则.然而,在对边界框的参数进行优化时,常用到距离损失,而按照IOU的标准则是取其最大值,二者之间是有一定差别的.对一个标准进行优化的目标函数是其标准本身.比如,对于2D的坐标对齐的边界框,可以直接使用IoU作为回归损失.然而,该方法存在一个弊端,就是当两个边界框不发生重叠时,Io…
目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.…
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:34:55 Paper: https://arxiv.org/pdf/1902.09630.pdf Project page: https://giou.stanford.edu/ Code: https://github.com/generalized-iou 1. Background and M…
内容概览:                                     知识科普                                    优缺点总结 功能参数详解翻译: 控制台参数详解翻译 setting各项功能参数翻译详解: 基本设置(含外观,字体,标签栏等设置) 启动设置(含任务栏其他等) 特征 综合参数 宏设置 文本管理器 基础信息 知识科普: Pentest Box在2015年发布,具体月份不详.Pentest Box开源项目的创始人是Aditya Agrawa…
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上是一种分类方法,在实际应用中,逻辑回归可以说是应用最广泛的机器学习算法之一 回归问题怎么解决分类问题? 将样本的特征和样本发生的概率联系起来,而概率是一个数.换句话说,我预测的是这个样本发生的概率是多少,所以可以管它叫做回归问题 在许多机器学习算法中,我们都是在追求这样的一个函数 例如我们希望预测一个学生的成…