Spark Streaming性能调优详解(转)】的更多相关文章

Spark Streaming性能调优详解 Spark  2015-04-28 7:43:05  7896℃  0评论 分享到微博   下载为PDF 2014 Spark亚太峰会会议资料下载.<Hadoop从入门到上手企业开发视频下载[70集]>.<炼数成金-Spark大数据平台视频百度网盘免费下载>.<Spark 1.X 大数据平台V2百度网盘下载[完整版]>.<深入浅出Hive视频教程百度网盘免费下载> 转发微博有机会获取<Spark大数据分析实战…
原文链接:Spark Streaming性能调优详解 Spark Streaming提供了高效便捷的流式处理模式,但是在有些场景下,使用默认的配置达不到最优,甚至无法实时处理来自外部的数据,这时候我们就需要对默认的配置进行相关的修改.由于现实中场景和数据量不一样,所以我们无法设置一些通用的配置(要不然Spark Streaming开发者就不会弄那么多参数,直接写死不得了),我们需要根据数据量,场景的不同设置不一样的配置,这里只是给出建议,这些调优不一定试用于你的程序,一个好的配置是需要慢慢地尝试…
前面我们学习了整个JVM系列,最终目标的不仅仅是了解JVM的基础知识,也是为了进行JVM性能调优做准备.这篇文章带领大家学习JVM性能调优的知识. 性能调优 性能调优包含多个层次,比如:架构调优.代码调优.JVM调优.数据库调优.操作系统调优等. 架构调优和代码调优是JVM调优的基础,其中架构调优是对系统影响最大的. 性能调优基本上按照以下步骤进行:明确优化目标.发现性能瓶颈.性能调优.通过监控及数据统计工具获得数据.确认是否达到目标. 何时进行JVM调优 遇到以下情况,就需要考虑进行JVM调优…
JVM性能调优详解 https://www.cnblogs.com/secbro/p/11833651.html 应该是 jdk8 以前的方法 貌似permsize 已经放弃这一块了. 前面我们学习了整个JVM系列,最终目标的不仅仅是了解JVM的基础知识,也是为了进行JVM性能调优做准备.这篇文章带领大家学习JVM性能调优的知识. 性能调优 性能调优包含多个层次,比如:架构调优.代码调优.JVM调优.数据库调优.操作系统调优等. 架构调优和代码调优是JVM调优的基础,其中架构调优是对系统影响最大…
数据接收并行度调优(一) 通过网络接收数据时(比如Kafka.Flume),会将数据反序列化,并存储在Spark的内存中.如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收.每一个输入DStream都会在某个Worker的Executor上启动一个Receiver,该Receiver接收一个数据流.因此可以通过创建多个输入DStream,并且配置它们接收数据源不同的分区数据,达到接收多个数据流的效果.比如说,一个接收两个Kafka Topic的输入DStream,可以被拆分为两个输入DStr…
集数合计:9章Java视频教程详情描述:A0193<Java生产环境下性能监控与调优详解视频教程>软件开发只是第一步,上线后的性能监控与调优才是更为重要的一步本课程将为你讲解如何在生产环境下对Java应用做性能监控与调优:通过本课程,你将掌握多种性能监控工具应用,学会定位并解决诸如内存溢出.cpu负载飙高等问题:学会线上代码调试,Tomcat.Nginx,GC调优等手段: 读懂JVM字节码指令,分析源码背后原理,提升应对线上突发状况的能力Java视频教程目录:第1章 课程介绍(Java秒杀课程…
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1>  每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到executor上面 去执行.Stage指的是一组并行运行的task,stage内部是不能出现shuffle的,因为shuffle的就像篱笆一样阻止了并行task的运 行,遇到shuffle就意味着到了stage的边界. <2>  CPU的c…
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. Data Serialization,默认使用的是Java Serialization,这个程序员最熟悉,但是性能.空间表现都比较差.还有一个选项是Kryo Serialization,更快,压缩率也更高,但是并非支持任意类的序列化. Memory Tuning,Java对象会占用原始数据2~5倍甚至更多的空间.最好的检测对象内存消耗的办法就是创建RDD,然后放到cache里面去,然后在UI 上…
来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能.以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值. num-execu…
1. 常规性能调优 一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略.  --driver-memory 配置Driver内存(影响不大) 内存大小影响不大 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本所示: /usr/opt/modules/spark/bin/spark-submit \ --class com.atg…