传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i,…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 一个整数,为所求的答案. 样例输入 6 样例输出 15 题解 欧拉函数 易得知满足gcd(n,x)==i的小于等于n的x的个数为phi(n/i), 并且欧拉函数可以在O(√n)的时间内快速求出.. 于是可以先求出所有n的因子,再用欧拉函数得出答案. 由于因子是成对出现的,所以因子并不需要枚举到n,只需枚举到…
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理论上来说复杂度是\(O(n)\)的,但是\(d\)的值十分有限.在\(2^{32}\)内最多的约数也只有1920个. /* */ #include<bits/stdc++.h> #define LL long long #define int long long const int MAXN =…
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求答案即可 #include <bits/stdc++.h> using namespace std; #define int long long int phi(int n) { int m = floor(sqrt(n + 0.5)), ans = n; for (int i = 2; i &l…
题意: 给你一个欧拉函数值 phi(n),问最小的n是多少. phi(n) <= 100000000 , n <= 200000000 解题思路: 对于欧拉函数值可以写成 这里的k有可能是等于0的,所以不能直接将phi(n)分解质因子.但是可以知道(Pr - 1)是一定存在的,那就直接枚举素数,满足phi(n) % (Pr-1)的都加进去,然后对这些素数进行爆搜...说到底还是暴力啊...想不到什么巧妙的办法了,最后需要注意的是,一遍枚举完各个素数后phi(n)除后还剩now,现在要判断(no…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^32) 只有一组数据,很好搞,答案就是sigma(phi(n/d)),直接搜就行了. //STATUS:C++_AC_8MS_11284KB #include <functional> #include <algorithm> #include <iostream> //#i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n)的阶乘,RE得不行.发现用到了大于sqrt (n)的阶乘. 然后翻看TJ. 发现phi可以现求!就用那个式子.我竟然都忘了! 注意最后剩下的一个大于sqrt (i)的质因数. #include<iostream> #include<cstdio> #include<cstrin…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6918   Accepted: 2234 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9190   Accepted: 3073 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 这题就是上一篇博客的变形. 题目解析:首先先求出与N互质的个数,即N的欧拉函数值,之后分解出N的因子来,求解方法如下. 证明: 要求有多少个 i 满足gcd(i, N) = d 如果gcd(i, N) = d,则gcd(i/d, N/d) = 1 由于i <= N,所以 i/d <= N/d,…
Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.…
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. "Oh…
Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. …
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n)必定是n的一个约数. 若p是n的约数,那么gcd(i,n)==p的有$φ(n/p)$个数,因为要使gcd(i,n)==p,i/p和n/p必须是互质的. 那么就是求i/p和n/p互质的i在[1,n]里有几个,就等价于 1/p,2/p,...,n/p 里面有几个和n/p互质,即φ(n/p). 求和的话,…
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因如下:1到n中有m个数字和n拥有公共的最大因子p,那么就需要把m*p加入答案中.问题是如何计算m的个数.因为假设某个数i与n的最大公约数为p,那么gcd(i,n) = p,可以得到gcd(i/p,n/p)=1.也就是说,有多少个i,就有多少个i/p与n/p互质.那么显然m即为n/p的欧拉函数φ(n/p). 知…
题目 传送门:QWQ 分析 题意就是求∑gcd(i, N) 1<=i <=N.. 显然$ gcd(i,n) = x $时,必然$x|n$. 所以我们枚举一下n的约数,对于每个约数x,显然$ gcd(i/x,n/x)=1$ 所以我们计算一下n/x的欧拉函数就ok了. 联赛前刷水题qwq 代码 // #include <bits/stdc++.h> #include <cstdio> #include <cmath> #include <algorithm…
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2,n)+gcd(3,n)+…………gcd(n-1,n)+gcd(n,n),(1<=n<2^31)是多少? 放心吧!!!暴力肯定是做不出来的,如果你数论只会gcd(和我一样),那还是学点东西再来挑战这个题吧!    这个题需要用到欧拉函数的知识…… 欧拉函数的定义:对正整数n,欧拉函数是小于n的正整数…
6322.Problem D. Euler Function 题意就是找欧拉函数为合数的第n个数是什么. 欧拉函数从1到50打个表,发现规律,然后勇敢的水一下就过了. 官方题解: 代码: //1004-欧拉函数水题 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typede…
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞出来个\(O(\sqrt{n})\)的算法 这题数据怎么这么水 首先看到gcd我们就下意识的对它反演一波对吧 第一步 \[ \sum_{i=1}^n \gcd(n,i) = \sum_{d|n} \varphi(d) \frac{n}{d} \] 这里提供两种化法,得到的结果都是这个. 法一 根据欧…
发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时候要进行标记. 先找出所有的素数p,满足(p - 1)整除题目中所给的phi(n) 然后暴搜.. 素数打表打到1e4就够了,如果最后剩下一个大素数单独进行判断. #include <cstdio> #include <cmath> #include <cstring> #i…
题意 给一个\(n\),计算 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 题解 令\(a = i - j\) 要求 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 即求 \[\sum_{i=1}^{n}\sum_{a=1}^{i-1}[gcd(2*i - a, a) = 1]\] 根据\(gcd\)的性质,即 \[\sum_{i=1}^{n}\sum_{a=…
前言:还算比较简单的数学题,我这种数学蒟蒻也会做QAQ. --------------- 题意:求$\sum\limits_{i=1}^n gcd(i,n)$的值. 设$gcd(i,n)=d$,即$d$为$i$和$n$的因数,那么有$gcd(i/d,n/d)=1$.假设我们求出了$x$个满足条件的$i$,那么总的结果就是$x*d$.我们因此可以枚举$n$的因数,累加即可.注意判断$n$是不是完全平方数. 问题来了:怎么求满足$gcd(i/d,n/d)=1$的$i$的个数?欧拉函数啊!我们可以$\…
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知识点:   欧拉函数.http://www.cnblogs.com/shentr/p/5317442.html 题解一: 当M==1时,显然答案为N. 当M!=1.  X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件.so  先把N素因子分解, N=     …
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k)) f(0,k) = balabalabalabala 所以,实际上的f(n,k)是这么个东西 f(0,(0,(0,(0,(0,(0,(0,(0,k)))))))) 直接递归求解并打出表来,我们可以发现这样的事实 f(0,k) = k+1 所以有f(n,k) = n + k + 1; 所以题目就转…
Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 852 Accepted Submission(s): 259 Problem Descriptionan = X*an-1 + Y and Y mod (X-1) = 0.Your task is to calculate th…
Reflect Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 288    Accepted Submission(s): 174 Problem Description We send a light from one point on a mirror material circle,it reflects N times and…