Plan: 分布式文件系统与HDFS HDFS体系结构与基本概念 HDFS的shell操作 java接口及常用api HADOOP的RPC机制 HDFS源码分析 远程debug 自己设计一分布式文件系统? Distributed File System 1.数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 . 2.是一种允许文件通过网络在多台主机上分享的文件系统,可…
适合大数据的分布式存储与计算平台 l作者:Doug Cutting l受Google三篇论文的启发   lApache 官方版本(1.0.4) lCloudera 使用下载最多的版本,稳定,有商业支持,在Apache的基础上打上了一些patch.推荐使用. lYahoo Yahoo内部使用的版本,发布过两次,已有的版本都放到了Apache上,后续不在继续发布,而是集中在Apache的版本上. Hadoop核心项目 lHDFS: Hadoop Distributed File System 分布式…
课程安排 Partitioner编程** 自定义排序编程** Combiner编程** 常见的MapReduce算法** ---------------------------加深拓展---------------------- Mapreduce原理及源码分析   Partitioner编程 Partitioner是partitioner的基类,如果需要定制partitioner也需要继承该类. 2. HashPartitioner是mapreduce的默认partitioner.计算方法是…
 课程安排 MapReduce原理*** MapReduce执行过程** 数据类型与格式*** Writable接口与序列化机制*** ---------------------------加深拓展---------------------- MapReduce的执行过程源码分析 问题:怎样解决海量数据的计算?  MapReduce概述 lMapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. lMR由两个阶段组成:Map和Reduce,用户只需要…
Hadoop学习笔记(10) ——搭建源码学习环境 上一章中,我们对整个hadoop的目录及源码目录有了一个初步的了解,接下来计划深入学习一下这头神象作品了.但是看代码用什么,难不成gedit?,单步调试呢? 看程序不能调那多痛苦啊,想看跟踪一下变量,想看一下执行路径都难. 所以这里,我们得把这个调试环境搭建起来.Hadoop的主要代码是用java编写的,所以这里就选用eclipse作为环境. Hadoop目录下,本身就可以为作eclipse的一个工程来操作,但这里我不想,我想自己来建一个工程,…
Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在…
Hadoop学习笔记(4) ——搭建开发环境及编写Hello World 整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclipse方便. 下载 进入官网:http://eclipse.org/downloads/. 找到相应的版本进行下载,我这里用的是eclipse-SDK-3.7.1-linux-gtk版本. 解压 下载下来一般是tar.gz文件,运行: $tar -zxvf eclipse-SDK-3.7.1-linu…
本文原创,转载注明作者和原文链接! 一:总结注意点: 到现在为止学习到的角色:三个NameNode.SecondaryNameNode.DataNode 1.存储的是每一个文件分割存储之后的元数据信息.具体的信息有: 2.而且NameNode的存储是内存存储的,不会有和磁盘的数据交换的过程,这样的话提高了整体的集群的效率,但是这个数据都是需要持久化的,因为不持久化的话,数据是不安全的,加假如哪一天hadoop集群中的NameNode那台服务器挂了的话,里面的元数据如果只是存储在内存中的就全部的丢…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…