利用用户行为数据 简介: 用户在网站上最简单存在形式就是日志. 原始日志(raw log)------>会话日志(session log)-->展示日志或点击日志 用户行一般分为两种: 1显性反馈:包括用户明确表示对物品喜好的行为(数据量小) 2隐形反馈:网页浏览等(数据量大) 用户行为的统一标准如下: 协同滤波与实验设计: 本文参考<推荐系统实践>这本书,但细节和书中略有不同,因为个人把书中代码组合到一起有些小问题,所以自己小修改了一番,可以运行,与大家分享. 实验数据集: 采用…
协同过滤 collaborative filtering 人以类聚,物以群分 相似度 1. Jaccard 相似度 定义为两个集合的交并比: Jaccard 距离,定义为 1 - J(A, B),衡量两个集合的区分度: 为什么 Jaccard 不适合协同过滤?-- 只考虑用户有没有看过,没考虑评分大小 2. 余弦相似度 根据两个向量夹角的余弦值来衡量相似度: 为什么余弦相似度不适合协同过滤?-- 不同用户各自评分总和不一样,导致评分占总比不一样,可能计算出和事实相反的结果. 3. Pearson…
python变量赋值: python的变量赋值 可以是单引号 也可以是双引号python 变量赋值的时候不能加()的 比如 name = "My Name is GF"变量赋值的时候赋值会报错赋值字符串错误 解决错误可检查解释器解释报错的行号来判断打印变量:打印变量 需要紧挨着()比如 print(Name) 感悟:这是最基础的字符串操作,也就是小孩子的牙牙学语阶段,其实特别简单下一篇就是对字符串进行改动,比如大小写,移动等等.也是人性化的操作.比较基础代码应用即将应用开始.我要在每一…
协同过滤需要注意的三点: gray sheep(有人喜欢追求特别,协同过滤一般只能从共同的人或物间找相似) shilling attack(水军刷好评导致数据错误,无法带来精确的推荐) cold start(冷启动,初次登陆网站,没有给商品打分,怎么推荐) 1.基于memory的CF (1)基于用户的CF Wu,v指的是两个用户之间的相似度 Pa,i指的是a用户对i商品的打分 4.67=用户1给所有商品打分的平均值,即(4+5+5)/3 (2)基于item的CF  计算列与列之间的相关性(商品与…
  ​​​1.变量 (1)变量名只能包含字母.数字和下划线,不能包含空格 (2)不要将python关键字与函数名作为变量名 (3)简短有描述性,避免使用小写字母l和大写字母O (4)python 始终记录变量的最新值 2.字符串 (1)用引号括起来的都是字符串,包括单引号和双引号 (2)字符串.title():以首字母大写的方式显示字符串每个单词 字符串.upper():将字符串所有字母大写 字符串.lower():将字符串所有字母小写 (3)拼接字符串:使用 +号 字符串a+字符串b (4)空…
摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口味向用户推荐歌曲.本文介绍一种基于用户和物品的协同过滤技术.首先,建立一个用户-物品相关矩阵来形成用户集群和物品集群.然后,使用这些集群找出和目标用户最相似的用户集群和物品集群.最后,系统会根据最相似的用户和物品集群来推荐音乐.该算法将在基准数据集Last.fm上进行实施.实验结果显示该算法的表现要…
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering     (24th-IJCAI ) (Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) ) [论文作者]Liping Jing, PengWa…
http://blog.csdn.net/dark_scope/article/details/17228643 〇.说明 本文的所有代码均可在 DML 找到,欢迎点星星. 一.引入 推荐系统(主要是CF)是我在参加百度的电影推荐算法比赛的时候才临时学的,虽然没拿什么奖,但是知识却是到手了,一直想写一篇关于推荐系统的文章总结下,这次借着完善DML写一下,权当是总结了.不过真正的推荐系统当然不会这么简单,往往是很多算法交错在一起,本文只是入门水平的总结罢了. (本文所用测试数据是movielens…
ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithms" . - 番石榴的日志 - 网易博客 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithm…
[论文标题]Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model   (35th-ICML,PMLR) [论文作者]Yehuda Koren [论文链接]Paper (9-pages // Double column) [摘要] 推荐系统为用户提供个性化的产品或服务建议.这些系统通常依赖于协同过滤(CF),通过分析过去的事务来建立用户和产品之间的关联.比较成功的CF方法有两种,一种是直…