Schwarz导数与凹凸性】的更多相关文章

命题 1: 定义区间$I$上的Schwarz导数$$D^{2}f(x)=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}$$若$D^{2}f(x)\geq 0$则$f(x)$为$I$上的下凸函数,若$D^{2}f(x)\leq 0$,则$f(x)$为$I$上的上凸函数.证明: 任意$\varepsilon >0$,构造辅助函数$$F(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]+\vareps…
生成简单多边形后,有时还需要对多边形各顶点的凹凸性做判断. 先计算待处理点与相邻点的两个向量,再计算两向量的叉乘,根据求得结果的正负可以判断凹凸性. 结果为负则为凹顶点,为正则为凸顶点. 凹顶点用o表示,凸顶点用*表示. 结果如下: matlab代码如下: clear all;close all;clc; n=; p=rand(n,); p=createSimplyPoly(p); %创建简单多边形 hold on; :n %处理第一个点 v1=p(n,:)-p(,:); %当前点到前一点向量…
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割的搞法大概有两种:剑宗——自低向上:先将图像聚类成小的像素团再慢慢合并,气宗——自顶向下:用多尺度模板分割图像,再进一步将图像优化分割成不同物体.当然,还有将二者合而为一的方法:training with data set. 这第三种方法也不好,太依赖于已知的物体而失去了灵活性.家庭机器人面对家里越…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情…
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大.极大似然原理的直观想法我们用下面例子说明.设甲箱中有99个白球,1个黑球:乙箱中有1个白球.99个黑球.现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的.一般说来,事件A发生的概…
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注意 Matlat 的数组下标从1开始), %m 个插值点以数组 x 输入,输出数组 y 为 m 个插值 n=length(x0);m=length(x); :m z=x(i); s=0.0; :n p=1.0; :n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end…
[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种…
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0x02 基本概念 2.1 泰勒展开 如何通俗推理? 2.2 牛顿法 2.2.1 泰勒一阶展开 2.2.2 泰勒二阶展开 2.2.3 高维空间 2.2.4 牛顿法基本流程 2.2.5 问题点及解决 2.3 拟牛顿法 2.4 L-BFGS算法 0x03 优化模型 -- L-BFGS算法 3.1 如何分布…
1.树上拓扑排序计数 结论$\dfrac{n!}{\prod\limits_{i=1}^n size_i}$ 对于节点$i$,其子树随意排序的结果是$size[i]!$ 但$i$需要排在第一位,只有$size[i]-1$个数可以任意排 乘上$\frac{1}{size[i]}$ 2.DAG上的问题退化成有向树解决 如果转化为DAG问题的题目,如果边与边之间有传递关系 可以退化成树进行解决 在建树的时候需要关心的是某一个点的直接父亲是什么 如ATcoder的ABC158F 3.在基环树上DP 主要…