导读:不知道大家有没有意识到一个现实:大部分时候,我们已经不像以前一样,通过命令行,或者可视窗口来使用一个系统了. 前言 现在我们上微博.或者网购,操作的其实不是眼前这台设备,而是一个又一个集群.通常,这样的集群拥有成百上千个节点,每个节点是一台物理机或虚拟机.集群一般远离用户,坐落在数据中心.为了让这些节点互相协作,对外提供一致且高效的服务,集群需要操作系统.Kubernetes 就是这样的操作系统. 比较 Kubernetes 和单机操作系统,Kubernetes 相当于内核,它负责集群软硬…
不少同学抱怨,在集群的GPU节点上运行caffe程序时,经常出现"Out of Memory"的情况.实际上,如果我们在提交caffe程序到某个GPU节点的同时,指定该节点某个比较空闲的gpu id,便可以避免"Out of Memory"的情况.步骤如下: 1. 在提交任务前,制作一个带有“nvidia-smi”命令的run_gpu.sh文件 #!/bin/bash #$ -V #$ -cwd #$ -j y #$ -S /bin/bash nvidia-smi…
一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说,你可以在小数据集上利用本地模式快速开发并验证你的应用,然后无需修改代码就可以在大规模集群上运行. 首先介绍分布式 Spark 应用的运行环境架构,然后讨论在集群上运行 Spark 应用时的一些配置项.Spark 可以在各种各样的集群管理器(Hadoop YARN.Apache Mesos,还有Sp…
Spark 可以在各种各样的集群管理器(Hadoop YARN.Apache Mesos,还有Spark 自带的独立集群管理器)上运行,所以Spark 应用既能够适应专用集群,又能用于共享的云计算环境. 在分布式环境下,Spark 集群采用的是主/ 从结构.在一个Spark 集群中,有一个节点负责中央协调,调度各个分布式工作节点.这个中央协调节点被称为驱动器(Driver)节点,与之对应的工作节点被称为执行器(executor)节点.驱动器节点可以和大量的执行器节点进行通信,它们也都作为独立的J…
有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Application可以直接运行在YARN集群上,这种运行模式,会将资源的管理与协调统一交给YARN集群去处理,这样能够实现构建于YARN集群之上Application的多样性,比如可以运行MapReduc程序,可以运行HBase集群,也可以运行Storm集群,还可以运行使用Python开发机器学习应用程序,等等…
*以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第四部分是讲的是Spark在集群上运行的知识点. 一.Spark应用组件介绍 二.Spark在集群运行过程 三.Spark配置 四.Spark资源分配 一.Spark应用组件介绍 Spark应用组件有三个:驱动器.集群管理器和执行器. 驱动器节点:有两个职责:把用户转为任务和为执行器节点调度任务. 执行器节点:负责在Spark作业中运作任务. 集群管理器:Spark依赖于集群管理器来启动执行器节点. 集群管理器:为了方便多人调度时合…
1.spark在集群上运行应用的详细过程 (1)用户通过spark-submit脚本提交应用 (2)spark-submit脚本启动驱动器程序,调用用户定义的main()方法 (3)驱动器程序与集群管理器通信,申请资源以启动执行器节点 (4)集群管理器为驱动器程序启动执行器节点 (5)驱动器进程执行用户应用中的操作.根据程序中所定义的对RDD的转化操作和行动操作,驱动器节点把工作以任务的形式发送到执行器进程 (6)任务在执行器程序中进行计算并保存结果 (7)如果驱动器程序的main()方法退出,…
一:打包成jar 1.修改代码 2.使用maven打包 但是目录中有中文,会出现打包错误 3.第二种方式 4.下一步 5.下一步 6.下一步 7.下一步 8.下一步 9.完成 二:在集群上运行(local模式) 1.上传 2.学习spark-submit的使用方式 3.运行(local模式) 4.运行结果 三:集群上运行(standalone模式) 1.DeoloyMode 表示Driver执行的位置. client如果是参数,则表示driver执行在执行spark-submit命令的机器上.…
Spark集群master节点:      192.168.168.200 Eclipse运行windows主机: 192.168.168.100 场景: 为了测试在Eclipse上开发的代码在Spark集群上运行的情况,比如:内存.cores.stdout以及相应的变量传递是否正常! 生产环境是把在Eclipse上开发的代码打包放到Spark集群上,然后使用spark-submit提交运行.当然我们也可以启动远程调试, 但是这样就会造成每次测试代码,我们都需要把jar包复制到Spark集群机器…
本文将介绍如何使用kubectl列举K8S集群中运行的Pod内的容器镜像. 注意:本文针对K8S的版本号为v1.9,其他版本可能会有少许不同. 0x00 准备工作 需要有一个K8S集群,并且配置好了kubectl命令行工具来与集群通信.如果未准备好集群,那么你可以使用Minikube创建一个K8S集群,或者你也可以使用下面K8S环境二者之一: Katacoda Play with Kubernetes 如果需要查看K8S版本信息,可以输入指令kubectl version. 在本练习中,我们将使…