Tensorflow从0到1(4)之神经网络】的更多相关文章

一维数据集上的神经网络 # 1 引入包,创建会话 import tensorflow as tf import numpy as np sess = tf.Session() # 2 初始化数据 data_size = 25 data_1d = np.random.normal(size=data_size) x_input_1d = tf.placeholder(dtype=tf.float32, shape=[data_size]) # 3 定义卷积层 def conv_layer_1d(i…
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1]. 更多信息请查看链接: http://yann.lecun.com…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
一.神经网络的实现过程 1.准备数据集,提取特征,作为输入喂给神经网络       2.搭建神经网络结构,从输入到输出       3.大量特征数据喂给 NN,迭代优化 NN 参数       4.使用训练好的模型预测和分类 二.前向传播   前向传播就是搭建模型的计算过程,可以针对一组输入给出相应的输出. 举例:假如生产一批零件, 体积为 x1, 重量为 x2, 体积和重量就是我们选择的特征,把它们喂入神经网络, 当体积和重量这组数据走过神经网络后会得到一个输出. 假如输入的特征值是:体积 0…
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是任意线性模型的组合仍然还是线性模型. 如果只通过线性变换,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何的区别,它们都是线性模型.然而线性模型能够解决的问题是有限的. 如果一个问题是线性不可分的,通过线性模型就无法很好的去分类这些问题. 1.2激活函数实现去线性化 神经元的输出为所有输入…
中文文档 TensorFlow 2 / 2.0 中文文档 知乎专栏 欢迎关注知乎专栏 https://zhuanlan.zhihu.com/geektutu 一.实战教程之强化学习 TensorFlow 2.0 (九) - 强化学习 70行代码实战 Policy Gradient TensorFlow 2.0 (八) - 强化学习 DQN 玩转 gym Mountain Car TensorFlow 2.0 (七) - 强化学习 Q-Learning 玩转 OpenAI gym TensorFl…
TensorFlow Hub 模型复用 TF Hub 网站 打开主页 https://tfhub.dev/ ,在左侧有 Text.Image.Video 和 Publishers 等选项,可以选取关注的类别,然后在顶部的搜索框输入关键字可以搜索模型. TF Hub 安装 是单独的一个库,需要单独安装,安装命令如下: pip install tensorflow-hub TF Hub 模型使用样例 import tensorflow_hub as hub hub_handle = 'https:/…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(shape()) 两个元素零向量 tf.zeros(shape=(2)) 2x2常量 tf.constant([1,2],[3,4]) 查看形状.类型.值 A.shape A.dtype A.numpy() 矩阵相加 tf.add(A,B) 矩阵相乘 tf.matmul(A,B) 自动求导机制  tf.G…
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1],并展平为784个特征的一维数组(28…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
原文:TensorFlow 2.0 Quick Start Guide 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 2.0 快速入门指南 零.前言 第 1 部分:TensorFlow 2.00 Alpha 简介 一.TensorFlow 2 简介 二.Keras:TensorFlow 2…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
TensorFlow 2.0 Alpha目前已经可以通过pip安装,亲测有效,安装指令为: # 普通版本 pip install tensorflow==2.0.0-alpha0 # GPU版本 pip install tensorflow-gpu==2.0.0-alpha0…
tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1.0 数据:http://download.tensorflow.org/example_images/flower_photos.tgz 花总共有五类,分别放在5个文件夹下. 闲话不多说,直接上代码,希望大家能看懂:) # -*- coding: utf-8 -*- from skimage im…
基本数值运算 除法和模运算符(/,//,%)现在匹配 Python(flooring)语义.这也适用于 [tf.div] 和 [tf.mod].要获取基于强制整数截断的行为,可以使用 [tf.truncatediv] 和 [tf.truncatemod]. 现在推荐使用 [tf.divide()] 作为除法函数.[tf.div()] 将保留,但它的语义不会回应 Python 3 或 [from future] 机制 [tf.mul,tf.sub ] 和 [tf.neg] 不再使用,改为 [tf.…
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip install tensorflow==2.0.0-alpha0 # gpu 版本 针对 GPU 版的安装完毕后还需要设置环境变量: SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH% SET PATH=C…
1.TensorFlow2.0的安装测试 Linux Tensorflow Dev Summit 正式宣布 Tensorflow 2.0 进入 Alpha 阶段. 基于 Anaconda 创建环境一个尝鲜环境: conda create -n tf2 然后: pip install tensorflow-gpu=2.0.0-alpha 由于 2.0 依赖的是 CUDA 10 所以系统内多半没有,直接用 conda 在虚拟环境装一个: conda install cudatoolkit cudnn…
TensorFlow 2.0 将包含许多 API 变更,例如,对参数进行重新排序.重新命名符号和更改参数的默认值.手动执行所有这些变更不仅枯燥乏味,而且容易出错.为简化变更过程并让您尽可能顺畅地过渡到 TensorFlow 2.0,TensorFlow 工程团队创建了实用程序 tf_upgrade_v2,可帮助您将旧代码转换至新 API. 60s测试:你是否适合转型人工智能? https://edu.csdn.net/topic/ai30?utm_source=cxrs_bw 传送门: tf_u…
机器之心报道 作者:邱陆陆 8 月中旬,谷歌大脑成员 Martin Wicke 在一封公开邮件中宣布,新版本开源框架——TensorFlow 2.0 预览版将在年底之前正式发布.今日,在上海谷歌开发者大会上,机器之心独家了解到一个重大的改变将会把 Eager Execution 变为 TensorFlow 默认的执行模式.这意味着 TensorFlow 如同 PyTorch 那样,由编写静态计算图全面转向了动态计算图. 谷歌开发者大会 在谷歌开发者大会的第二天,主会场全天都将进行 TensorF…
前言 之前写了几篇关于 TensorFlow 1.x GPU 版本安装的博客,但几乎没怎么学习过.之前基本在搞 Machine Learning 和 Data Mining 方面的东西,极少用到 NN,虽然看过几次相关代码,但没怎么看懂过,静态图是有些复杂,对像我这样的菜鸡来说难度有那么点点点点点大 orz... 不过好在今年 TensorFlow 2.0 终于出了,前段时间安装了并学习了下,感觉确实要简单了很多,可能是因为我用的 tensorflow.keras 的原因吧.不管怎么说,用的爽就…
Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改.TensorFlow 2.0删除了篇冗余API,使API更加一致(统一RNNs, 统一优化器),并通过Eager execution更好地与Python集成. 许多RFCs已经解释了TensorFlow 2.0带来的变化.本指南介绍了TensorFlow 2.0应该怎么进行开发.这假设您已对TensorFlow 1.x有一定了解. A brief summary o…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train.Checkpoint :变量的保存与恢复 只保存模型的参数,不保存模型的计算过程 需要导出模型(无需源代码也能运行模型),请参考 SavedModel 可以使用其 save() 和 restore() 方法将 TensorFlow 中所有包含 Checkpointable State 的对象进行保存…
背景 Anaconda切换各种环境非常方便,现在我们就来介绍一下如何使用anaconda安装tensorflow环境. anaconda v3.5 from 清华镜像站 tensorflow v2.0 步骤 创建新的环境 启动Anaconda Navigator,点击Enviorments,点击Create: 输入自定义环境的名字(例如tensorflow),根据自己的喜好指定python( Tensorflow1.13.1版本以及后续版本支持Python3.7) 右上方搜索tensorflow…
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情绪分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 我假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,我建议先阅读NLP的理解卷积神经网络,以获…
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space.", 20131 from __future__ import division, print_function, absolute_import import collect…
使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和10,000个用于测试的样本.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到255. 在此示例中,每个图像将转换为float32,归一化为[0,1],并展平为784个特征(28 * 28)的1维数组. from __future__ import absolut…
使用TensorFlow v2.0的基本张量操作 from __future__ import print_function import tensorflow as tf # 定义张量常量 a = tf.constant(2) b = tf.constant(3) c = tf.constant(5) # 各种张量操作 # 注意:张量也支持python的操作( ,*,...) add = tf.add(a,b) sub = tf.subtract(a,b) mul = tf.multiply(…
目录: 神经网络前言 神经网络 感知机模型 多层神经网络 激活函数 Logistic函数 Tanh函数 ReLu函数 损失函数和输出单元 损失函数的选择 均方误差损失函数 交叉熵损失函数 输出单元的选择 线性单元 Sigmoid单元 Softmax单元 参考文献         一.神经网络前言 从本章起,我们将正式开始介绍神经网络模型,以及学习如何使用TensorFlow实现深度学习算法.人工神经网络(简称神经网络)在一定程度上受到了生物学的启发,期望通过一定的拓扑结构来模拟生物的神经系统,是…
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data…