pytorch LSTM情感分类全部代码】的更多相关文章

先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import config class ImdbDataset(Dataset): def __init__(self,train=True): super(ImdbDataset,self).__init__()…
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param input: :return: ''' input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded) out = torch.cat(h_n[-1,:,:…
使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pandas as pd from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirect…
PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产框架打广告:加入TechWriter队伍,强大国产深度学习利器.https://github.com/PaddlePaddle/Paddle/issues/787 . . 一.情感分类模型介绍CNN.RNN.LSTM.栈式双向LSTM 教程链接:http://book.paddlepaddle.or…
文章目录 0. BERT介绍 1. BERT配置 1.1. clone BERT 代码 1.2. 数据处理 1.2.1预训练模型 1.2.2数据集 训练集 测试集 开发集 2. 修改代码 2.1 加入新的处理类 2.2 处理类注册 3. 运行代码 4. 分类预测 4.1 修改参数, 进行预测 4.2 得到类别 5. 运行问题 5.1 出现内存不够 6. 源码 GITHUB 地址 0. BERT介绍 google 在2018年放出的大杀器, 作为当前NLP的最新技术,此模型在NLP的多个上游下游问…
详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac…
kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0和1情感二分类 我的github代码仓库:https://github.com/beathahahaha/kaggle_IMDB_sentiment_classification 给出两段代码,都值得借鉴: 第一个是,lstm实现的pytorch版本,调参以后从0.90569提升到了0.95718(…
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取.模型的学习.而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤.虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的.对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直…
2018年google推出了bert模型,这个模型的性能要远超于以前所使用的模型,总的来说就是很牛.但是训练bert模型是异常昂贵的,对于一般人来说并不需要自己单独训练bert,只需要加载预训练模型,就可以完成相应的任务.下面我将以情感分类为例,介绍使用bert的方法.这里与我们之前调用API写代码有所区别,已经有大神将bert封装成.py文件,我们只需要简单修改一下,就可以直接调用这些.py文件了. 官方文档 tensorflow版:点击传送门 pytorch版(注意这是一个第三方团队实现的)…
文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作 分词工具 测试结果 结巴中文分词 工信处/ 女干事/ 每月/ 经过/ 下属/ 科室/ 都/ 要/ 亲口/ 交代/ 24/ 口/ 交换机/ 等/ 技术性/ 器件/ 的/ 安装/ 工作 中科院分词 工/n 信/n 处女/n 干事/n 每月/r 经过/p 下属/v 科室/n 都…