[Updating]点分治学习笔记】的更多相关文章

Upd \(2020/2/15\),又补了一题 LuoguP2664 树上游戏 \(2020/2/14\),补了一道例题 LuoguP3085 [USACO13OPEN]阴和阳Yin and Yang To Do List 动态点分治.这个看心情写吧......是贞德不想写qwq 嘛...上个世纪学的...好像全忘了....来写一下吧 这个应该算树上路径类问题的一类trick吧... che dan环节 点分治嘛,顾名思义,先抓树上一个点算它对答案贡献,然后把这个点割掉,会变成几棵小一点的树,然…
前言骚话 本人蒟蒻,一开始看到模板题就非常的懵逼,链接,学到后面就越来越清楚了. 吐槽,cdq,超短裙分治....(尴尬) 正片开始 思想 和普通的分治,还是分而治之,但是有一点不一样的是一般的分治在合并问题答案是,左右区间是分开来的,也就是左区间的答案不会对右区间的答案造成贡献,但是cdq分治要处理的就是左区间对于右区间的答案. 很多情况下,cdq分治都可以解决掉一维的答案,简单的来说就是直接去掉一个嵌套的数据结构,简直将代码量降至低谷,但是有一个很明显的缺点就是只能实现离线操作.QwQ 还是…
数据结构中的一块内容:$CDQ$分治算法. $CDQ$显然是一个人的名字,陈丹琪(NOI2008金牌女选手) 这种离线分治算法被算法界称为"cdq分治" 我们知道,一个动态的问题一定是由"更改""查询"操作构成的,显然,有些“更改”会改变"查询的结果",而有些不能 如果我们合理安排一个次序,把每一个查询分成几个部分,分别计算值,最后合起来就是原来询问的值. 离线算法和在线算法的概念不用过多解释. 接下来通过几个例题将基本的$C…
突然发现网上关于点分和动态点分的教程好像很少……蒟蒻开篇blog记录一下吧……因为这是个大傻逼,可能有很多地方写错,欢迎在下面提出 参考文献:https://www.cnblogs.com/LadyLex/p/8006488.html https://blog.csdn.net/qq_39553725/article/details/77542223 https://blog.csdn.net/zzkksunboy/article/details/70244945 前言 一般来说,对于大规模处理…
待我玩会游戏整理下思绪(分明是想摸鱼 cdq分治是一种用于降维和处理对不同子区间有贡献的离线分治算法 对于常见的操作查询题目而言,时间总是有序的,而cdq分治则是耗费\(O(logq)\)的代价使动态操作化为静态查询问题(the world! 考虑无修改的求逆序对问题 每个元素可定义为\((pos_i,val_i)\),求对每个\((pos_i,val_i)\)有多少个\((pos_j,val_j)\),满足\(pos_j<pos_i,val_j>val_i\) cdq分治的过程就是令其中一维…
首先肯定是要膜拜CDQ大佬的. 题目背景 这是一道模板题 可以使用bitset,CDQ分治,K-DTree等方式解决. 题目描述 有 nn 个元素,第 ii 个元素有 a_iai​.b_ibi​.c_ici​ 三个属性,设 f(i)f(i) 表示满足 a_j \leq a_iaj​≤ai​ 且 b_j \leq b_ibj​≤bi​ 且 c_j \leq c_icj​≤ci​ 的 jj 的数量. 对于 d \in [0, n)d∈[0,n),求 f(i) = df(i)=d 的数量 输入输出格式…
三维偏序 就是让第一维有序 然后归并+树状数组求两维 cdq+cdq不会 告辞 #include <bits/stdc++.h> // #define int long long #define rep(a , b , c) for(int a = b ; a <= c ; ++ a) #define Rep(a , b , c) for(int a = b ; a >= c ; -- a) #define go(u) for(int i = G.head[u] , v = G.t…
目录 前言 啥是CDQ啊(它的基本思想) 例题 后记 参考博文 前言 博主太菜了 学习快一年的OI了 好像没有什么会的算法 更寒碜的是 学一样还不精一样TAT 如有什么错误请各位路过的大佬指出啊感谢! 啥是CDQ啊(它的基本思想) cdq 一个离线的算法 我们要解决一系列问题,这些问题一般包含修改和查询操作,可以把这些问题排成一个序列,用一个区间[L,R]表示. 分.递归处理左边区间[L,M]和右边区间[M+1,R]的问题. 治.合并两个子问题,同时考虑到[L,M]内的修改对[M+1,R]内的查…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
<?php/*** PHP操作MongoDB学习笔记*///*************************//**   连接MongoDB数据库  **////*************************//格式=>("mongodb://用户名:密码 @地址:端口/默认指定数据库",参数)$conn = new Mongo();//可以简写为//$conn=new Mongo(); #连接本地主机,默认端口.//$conn=new Mongo("172…