原文地址:https://www.cnblogs.com/Johnny-z6951/p/11201081.html 梯度下降是一个在机器学习中用于寻找较佳结果(曲线的最小值)的迭代优化算法.梯度的含义是斜率或者斜坡的倾斜度.下降的含义是代价函数的下降.算法是迭代的,意思是需要多次使用算法获取结果,以得到最优化结果.梯度下降的迭代性质能使欠拟合演变成获得对数据的较佳拟合. 梯度下降中有一个称为学习率的参量.刚开始学习率较大,因此下降步长更大.随着点的下降,学习率变得越来越小,从而下降步长也变小.同…
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首先引入Dropout的原理和实现,然后观察现代深度模型Dropout的使用情况,并与BN进行实验比对,从原理和实测上来说明Dropout已是过去式,大家应尽可能使用BN技术. 一.Dropout原理 根据wikipedia定义,dropout是指在神经网络中丢弃掉一些隐藏或可见单元.通常来说,是在神…
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构,各类优化方法 1.卷积神经网络工作原理的直观解释 https://www.zhihu.com/question/39022858 简单来说,在一定意义上,训练CNN就是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活能力,以达到CNN网络的分类/检测等目的. 2.卷积神经网络的复杂度分析 ht…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…
TensorFlow深度学习基础与应用实战高清视频教程,适合Python C++ C#视觉应用开发者,基于TensorFlow深度学习框架,讲解TensorFlow基础.图像分类.目标检测训练与测试以及后期在C++和C#的应用. 视频目录如下: 你能学到那些内容预览: TensorFlow深度学习基础与应用实战高清视频教程,适合Python C++ C#视觉应用开发者,基于TensorFlow深度学习框架,讲解TensorFlow基础.图像分类.目标检测训练与测试以及后期在C++和C#的应用.…
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础image. 思路就是先把常用的东西都塞进去,build成image,此后使用时想装哪个框架就装. 为了体验重装系统的乐趣,所以采用慢慢来比较快的步骤,而不是通过Dockerfile来build. 环境信息 已经安装了Docker CE和NVIDIA Container Toolkit,具体流程参考这里…
深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练:(2)iteration:1个iteration等于使用batchsize个样本训练一次:(3)epoch:1个epoch等于使用训练集中的全部样本训练一次: 举个例子,训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要:100次iteratio…
该论文提出了一种新颖的深度网络结构,称为"Network In Network"(NIN),以增强模型对感受野内local patches的辨别能力.与传统的CNNs相比,NIN主要的创新点在于结构内使用的mlpconv layers(multiple layer perceptron convolution layers)和global average pooling.下面先介绍二者: MLP Convolution Layers 如Fig.1所示,传统卷积网络中的 linear c…
代码和其他资料在 github 一.tf.keras概述 首先利用tf.keras实现一个简单的线性回归,如 \(f(x) = ax + b\),其中 \(x\) 代表学历,\(f(x)\) 代表收入,分别代表输入特征和输出值.为了描述预测目标与真实值之间的整体误差最小,需要定义一个损失函数,数学描述为\((f(x) - y)^2\),即预测值与真实值差值的平方的均值.优化的目标是求解参数 \(a,b\) 使其损失函数最小. import tensorflow as tf import pand…
ResNet可以说是在过去几年中计算机视觉和深度学习领域最具开创性的工作.在其面世以后,目标检测.图像分割等任务中著名的网络模型纷纷借鉴其思想,进一步提升了各自的性能,比如yolo,Inception-v4等. ResNet通过重构模型对残差映射(Residual mapping)进行拟合,而非以往那样拟合期望的潜在映射(Underlying mapping).借助这一举措,ResNet解决了"退化问题"(Degradation problem),使得训练数百甚至数千层网络成为可能,且…
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 代码集:https://github.com/ageron/handson-ml 监督学习 1)决策树(Decision Tree)和随机森林 决策树: 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二…
参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代码实现–决策树 决策树学习笔记(Decision Tree) 引自:Python3<机器学习实战>学习笔记(二):决策树基础篇之让我们从相亲说起 github:https://github.com/Jack-Cherish/Machine-Learning/tree/master/Decision…
从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. 参考:机器学习&深度学习算法及代码实现 学习路线第一步:数学主要为微积分.概率统计.矩阵.凸优化 第二步:数据结构/算法常见经典数据结构(比如字符串.数组.链表.树.图等).算法(比如查找.排序)同时,辅助刷leetcode,提高编码coding能力 第三步:Python数据分析掌握Python这门…
one epoch:所有的训练样本完成一次Forword运算以及一次BP运算 batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学习每一次参数的更新所需要损失函数并不是由一个{data:label}获得的,而是由一组数据加权得到的,这一组数据的数量就是[batch size].当然batch size 越大,所需的内存就越大,要量力而行 iterations(迭代):每一次迭代都是一次权重更新,每一次权重更新需要batch size个数据进行Forward运…
在深度学习中,数据短缺是我们经常面临的一个问题,虽然现在有不少公开数据集,但跟大公司掌握的海量数据集相比,数量上仍然偏少,而某些特定领域的数据采集更是非常困难.根据之前的学习可知,数据量少带来的最直接影响就是过拟合.那有没有办法在现有少量数据基础上,降低或解决过拟合问题呢? 答案是有的,就是数据增强技术.我们可以对现有的数据,如图片数据进行平移.翻转.旋转.缩放.亮度增强等操作,以生成新的图片来参与训练或测试.这种操作可以将图片数量提升数倍,由此大大降低了过拟合的可能.本文将详解图像增强技术在K…
Batch Normalization(批量标准化,简称BN)是近些年来深度学习优化中一个重要的手段.BN能带来如下优点: 加速训练过程: 可以使用较大的学习率: 允许在深层网络中使用sigmoid这种易导致梯度消失的激活函数: 具有轻微地正则化效果,以此可以降低dropout的使用. 但为什么BN能够如此有效?让我们来一探究竟. 一.Covariate Shift Convariate shift是BN论文作者提出来的概念,其意是指具有不同分布的输入值对深度网络学习的影响.举个例子,假设我们有…
深度学习最终目的表现为解决分类或回归问题.在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数. 而在多元分类的问题中,我们默认采用softmax函数,具体表现为将多个神经元的输出,映射到0 ~ 1的区间中,按概率高低进行分类,各概率之和为1. 某分类的概率数学表达式为:yi = ei / ∑j=1ej   具体来说,假设有四个输出单元,分别为: y1 = ex1 / (ex1 + ex2 + ex3 + ex4 ),假设其概…
该论文是深度学习领域的经典之作,因为自从Alex Krizhevsky提出AlexNet并使用GPUs大幅提升训练的效率之后,深度学习在图像识别等领域掀起了研究使用的热潮.在论文中,作者训练了一个含有 60 million个参数和650000个神经元的深度卷积神经网络对ImageNet LSVRC-2010中1.2million个高分辨率彩色图像进行分类,最终取得出色的结果.在论文中作者详细描述了网络架构以及训练过 程,同时作者也对Alex网络中的一些特点及创新之处进行了介绍.下面我会记录下阅读…
从算法的命名上来说,PReLU 是对 ReLU 的进一步限制,事实上 PReLU(Parametric Rectified Linear Unit),也即 PReLU 是增加了参数修正的 ReLU. 在功能范畴上,ReLU . PReLU 和 sigmoid . tanh 函数一样都是作为神经元的激励函数(activation function). 1. ReLU 与 PReLU 注意图中通道的概念,不通的通道对应不同的 $$ 如果 ai=0,那么 PReLU 退化为 ReLU:如果 ai 是一…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及花书的读书笔记.本文将以多分类任务为例,介绍多层的前馈神经网络(Feed Forward Networks,FFN)加上Softmax层和交叉熵CE(Cross Entropy)损失的前向传播和反向传播过程(重点).本文较长. 一.概述 1.1 多层前馈神经网络         多层的前馈神经网络又名多层感知机(Multi-Layer Perceptrons, MLP).MLP只是经验叫法,但实际上FFN不等价于ML…
1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找到一个能使训练集中的数据可分的超平面.因此,它找到的并不一定是最优的,即只是恰好拟合了训练数据的超平面. 2. 学习 感知机的学习策略为:最小化误分类点到超平面的距离. 3. 基于numpy的感知机实现 1 # coding: utf-8 2 import numpy as np 3 4 5 def…
Highway Networks 论文地址:arXiv:1505.00387 [cs.LG] (ICML 2015),全文:Training Very Deep Networks( arXiv:1507.06228 ) 基于梯度下降的算法在网络层数增加时训练越来越困难(并非是梯度消失的问题,因为batch norm解决梯度消失问题).论文受 RNN 中的 LSTM.GRU 的 gate 机制的启发,去掉每一层循环的序列输入,去掉 reset gate (不需要遗忘历史信息),仍使用 gate 控…
Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至抛弃了全连接层,转而使用GAP,而在支持迁移学习方面,各个模型几乎都支持使用Global Average Pooling和Global Max Pooling(GMP). 然而,GAP是否真的可以取代全连接层?其背后的原理何在呢?本文来一探究竟. 一.什么是GAP? 先看看原论文的定义: In th…
目录 Probabilistic Graphical Models Statistical and Algorithmic Foundations of Deep Learning 01 An overview of DL components Historical remarks: early days of neural networks Reverse-mode automatic differentiation (aka backpropagation) Modern building…
该笔记是我快速浏览论文后的记录,部分章节并没有仔细看,所以比较粗糙. 从摘要中可以得知,论文提出在每次训练时通过随机忽略一半的feature detectors(units)可以极大地降低过拟合.该方法能够防止feature detectors之间的complex co-adaptations,即feature detectors只有在一些其它特定的feature detectors存在时才能发挥作用的情况.经过实验证明,随机dropout能够在许多任务中带来很大的性能提升. 在训练集上通过使用…
作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统的模式识别模型中,往往会使用手动设计的特征提取器从输入中提取相关信息并去除不相关的可变性,然后一个可训练的分类器对这些提取到的特征进行分类.在本论文的方案中,标准的全连接多层网络就相当于分类器,并且该方案尽可能多地依赖特征提取器本身的学习.在字符识别任务中,一个网络可以将几乎未经过处理的数据作为输入…
常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) relu: y = max(0, x) 其代码实现如下: import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def tanh(x): return (np.e…
在深度学习过程中,会经常看见各成熟网络模型在ImageNet上的Top-1准确率和Top-5准确率的介绍,如下图所示: 那Top-1 Accuracy和Top-5 Accuracy是指什么呢?区别在哪呢?我们知道ImageNet有大概1000个分类,而模型预测某张图片时,会给出1000个按概率从高到低的类别排名, 所谓的Top-1 Accuracy是指排名第一的类别与实际结果相符的准确率, 而Top-5 Accuracy是指排名前五的类别包含实际结果的准确率. 下面的代码可更为直观地说明其中的区…