数论(lcm)】的更多相关文章

“无体育,不清华”.”每天锻炼一小时,健康工作五十年,幸福生活一辈子”在清华,体育运动绝对是同学们生活中 不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早起去跑 步不太现实,所以王队长决定每a天晨跑一次.换句话说,假如王队长某天早起去跑了步,之后他会休息a-1天,然 后第a天继续去晨跑,并以此类推.王队长的好朋友小钦和小针深受王队长坚持锻炼的鼓舞,并决定自己也要坚持 晨跑.为了适宜自己的情况,小钦决定每b天早起跑步一次,而小针决定每c天早起跑步一次.…
cd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=xykk,而lcm=xyk,所以ab=gcd*lcm. 所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n) 递归实现: ''' LL gcd(LL a, LL b){ return b ? gcd(b, a%b) : a; } ''' while循环: ''' LL gcd(LL a, LL…
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * p2^x2 * .... ^ pn^xk y = p1^y1 * p2^y2 * .... ^ pn^yk x = p1^z1 * p2^z2 * .... ^ pn^zk 那么对于任意i (0<=i<=k) 都有 min(xi, yi, zi) = 0, max(xi, yi, zi) = n…
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) for( int j = i; j <= n; j++ ) if( lcm(i, j) ==…
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm(x, y). 考虑(ex, ey)是由其他点走过来的,不妨设当走到(x,y)时候,gcd(x, y)=k,x=k*m1, y=k*m2. 下一步有可能是(x, y+x*y/gcd(x, y))或者是(x+x*y/gcd(x,y), y). 用k和m1,m2来表示为(k*m1, k*m2+m1*m2…
LCM Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 47    Accepted Submission(s): 31 Problem Description A frog has just learned some number theory, and can't wait to show his ability to hi…