pandas的数据统计函数】的更多相关文章

# 1汇总类统计 # 2唯一去重和按值计数 # 3 相关系数和协方差 import pandas as pd # 0 读取csv数据 df = pd.read_csv("beijing_tianqi_2018.csv") df.head() # 换掉温度后面的后缀 df.loc[:,"bWendu"] = df["bWendu"].str.replace("℃","").astype("int32…
Pandas数据统计函数 汇总类统计 唯一去重和按值计数 相关系数和协方差 0.读取csv数据 1.汇总类统计 2.唯一去重和按值计数 2.1 唯一性去重 一般不用于数值列,而是枚举.分类列 2.2 按值计数 3.相关系数和协方差 用途(超级厉害): 两只股票,是不是同涨同跌?程度多大?正相关还是负相关? 产品销量的波动,跟哪些因素正相关.负相关,程度有多大? 来自知乎,对于两个变量X.Y: 协方差:衡量同向反向程度,如果协方差为正,说明X,Y同向变化,协方差越大说明同向程度越高:如果协方差为负…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 获取金额最大前10项 Loc 单列数据筛选并排序 多列数据筛选并排序 按筛选条件求和(sumif, sumifs) 按筛选条件计数(countif, countifs) 按筛选条件计算均值(averageif, averageifs) 按筛选条件获取最大值和最小值 筛选和排序是Excel中使用频率…
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信息 按日期汇总信息 resample() 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔数,大于5000元的贷款数量等等.本篇文章介绍如何通过python按特定的维度或条件对数据进行提取,完成数据提取需求. 准备工作 首先是准备…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(index) 增加一个值变量(value) 更改数值汇总方式 增加数值汇总方式 增加一个列维度(columns) 增加多个列维度 增加数据汇总值 数据透视表是Excel中最常用的数据汇总工具,它可以根据一个或多个制定的维度对数据进行聚合.在python中同样可以通过pandas.pivot_table函数来…
Pandas 把数据写入csv from sklearn import datasets import pandas as pd iris = datasets.load_iris() iris_X = iris.data iris_y = iris.target df=pd.DataFrame(iris_y) df.to_csv(r"C:\Users\si\Desktop\11.csv")…
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 数据分组--〉归纳 程序示例: import numpy as np import pandas as pd # 读入数据 df=pd.read_csv('data1.txt') print('原始数据') print(df) #返回一个对象 group=df.groupby(df['产地']) #…