Strassen __128int】的更多相关文章

题目链接 题意思路很简单,递归求最小就好了.但__128int没见过.故写博客记下.__128int如果输入输出就要自己写函数. #include<bits/stdc++.h> using namespace std; ; typedef __int128 lll; int T,a,b;long long n; lll calc(lll n) { lll ans=n*n*n*b+(n-)*n*n*a; ==) ans=min(ans,*(n/)*(n/)*a+*calc(n/)); retur…
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇日志通过解决矩阵的乘法,来了解另外一个基本divide and conque思想的strassen算法. 矩阵A乘以B等于X, 则Xij = 注意左乘右乘的区别,AB 与BA是不同的.如果r = 1, 直接就是两个数的相乘.如果r = 2, 例如X = [ 1, 2;   3, 4];Y = [ 2…
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import org.junit.Test; /** * 矩阵相乘的算法 * * @author xiaojintao * */ public class MatrixOperation { /** * 普通的矩阵相乘算法,c=a*b.其中,a.b都是n*n的方阵 * * @param a * @param b…
如题,该算法是来自德国的牛逼的数学家strassen搞出来的,因为把n*n矩阵之间的乘法复杂度降低到n^(lg7)(lg的底是2),一开始想当然地认为朴素的做法是n^3,哪里还能有复杂度更低的做法,但是牛逼的strassen先生简直刷新了我的线性代数观和算法观 好吧,回来添一句:其实这个好理解,为何我一开始认为朴素计算方法是唯一的做法(而且为何还有strassen这样复杂度进一步降低的算法),举个例子:(A+B)(C+D),怎么做合适?先加后乘:两次加法,一次乘法:先乘后加:经历四次乘法和四次加…
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析…
偶尔在算法课本上面看到矩阵相乘的算法,联想到自己曾经在蓝桥杯系统上曾经做过一道矩阵相乘的题目,当时用的是普通的矩阵相乘的方法,效率极低,勉强通过编译.所以决定研究一下Strassen矩阵相乘算法,由于本人比较懒,所以就从网上找了一些相关的资料供大家参考: 下面内容均转自 https://i.cnblogs.com/EditPosts.aspx?opt=1 请尊重版权,支持原创. 题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的…
前言: 很多朋友看到我写的<算法导论>系列,可能会觉得云里雾里,不知所云.这里我再次说明,本系列博文时配合<算法导论>一书,给出该书涉及的算法的c++实现.请结合<算法导论>一书阅读该系列博文.我这里有该书的电子版,有需要的朋友可以留言. 正题: 今天讨论的算法是矩阵乘法的Strassen算法,该算法的精髓在于减少n/2矩阵*n/2矩阵的次数.首先,作一些写该算法的基础工作: /* * 矩阵的加法运算 */ void Add(int** matrixA, int** m…
Let A, B be two square matrices over a ring R. We want to calculate the matrix product C as {\displaystyle \mathbf {C} =\mathbf {A} \mathbf {B} \qquad \mathbf {A} ,\mathbf {B} ,\mathbf {C} \in R^{2^{n}\times 2^{n}}} If the matrices A, B are not of ty…
目录 1.矩阵相乘的朴素算法 2.矩阵相乘的strassen算法 3.完整测试代码c++ 4.性能分析 5.参考资料 内容 1.矩阵相乘的朴素算法 T(n) = Θ(n3) 朴素矩阵相乘算法,思想明了,编程实现简单.时间复杂度是Θ(n^3).伪码如下 to n to n to n do c[i][j] ← c[i][j] + a[i][k]⋅ b[k][j] 2.矩阵相乘的strassen算法 T(n)=Θ(nlog7) =Θ (n2.81) 矩阵乘法中采用分治法,第一感觉上应该能够有效的提高算…
简单方阵矩乘法 SQUARE-MATRIX-MULTIPLY(A,B) n = A.rows let C be a new n*n natrix to n to n cij = to n cij=cij+aik·bkj return C 一个简单的分治算法 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,B) n = A.rows let C be a new n*n matrix c11=a11·b11 else partition A,B,and C as in equ…