1.问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2.在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算.然后我觉得可能是关于0的吧,然后进行了验证. 3.验证方法:因为我使用的是softmax loss, 我直接打印每一步的输出向量中的最大值即: print(np.max(y.eval({x:data}))) 发现最大值接近1甚至有的就是1.0,可想而知,其他维度都接近0了,那么我们来看公式: 交叉熵loss: y_ * log(y)  当0*log…
from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入normalization,例如BN.L2 norm等):2.更换参数初始化方法(对于CNN,一般用xavier或者msra的初始化方法):3.减小学习率.减小batch size:4.加入gradient clipping: 发布于 2016-09-04   仁孟     说明训练不收敛了, 学习率…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backend时的训练逻辑梳理,主要是结合项目,研究了下源代码! 我们的项目是智能问答机器人,基于双向RNN(准确的说是GRU)网络,这里网络结构,就不做介绍,只研究其中的训练逻辑,我们的训练是基于fit_generator,即基于生成器模型,节省内存,有助效率提升. 什么是生成器以及生成器的工作原理,这里不…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: utf-8 -*- from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import cv2 import os # 验…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
我们已经训练过几个神经网络了,识别手写数字,房价预测或者是区分猫和狗,那随之而来就有一个问题,这些训练出的网络怎么用,每个问题我都需要重新去训练网络吗?因为程序员都不太喜欢做重复的事情,因此答案肯定是已经有轮子了. 我们先来介绍一个数据集,ImageNet.这就不得不提一个大名鼎鼎的华裔 AI 科学家李飞飞. 2005 年左右,李飞飞结束了他的博士生涯,开始了他的学术研究不就她就意识到了一个问题,在此之前,人们都尽可能优化算法,认为无论数据如何,只要算法够好,就能做出更好的决策,李飞飞意识到了这…
上一篇文章我们聊的是使用预训练网络中的一种方法,特征提取,今天我们讨论另外一种方法,微调模型,这也是迁移学习的一种方法. 微调模型 为什么需要微调模型?我们猜测和之前的实验,我们有这样的共识,数据量越少,网络的特征节点越多,会越容易导致过拟合,这当然不是我们所希望的,但对于那些预先训练好的模型,还有可能最终无法很好的完成所要做的工作,因此我们还需要对其更改,基于此原因,我们需要做的就是拿来一个训练好的模型,更改其中更加抽象的层,即网络后面的层,然后再采用新的分类器,这样可以比较好的解决上面所提出…