Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 1.4. 实现代码1 1.1. 原理,主要使用像素模糊后的差别会变小 通过计算横向前后俩点像素的差异..然后累加即可.. 1.2. 具体流程 图片灰度化,这样可以只保留hsv分量了...然后读取v分量,就是明亮度了.. Hs色相和饱和度全部去除了..   比较v分量的差异即可.. 1.3. 提升性…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3.  1.失焦检测. 衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰.1 1.4. 利用边缘检测 ,模糊图片边缘会较少2 1.5. 通过dct比较.Dct分离出的低频信号比较2 1.6. 参考资料2 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的 1.2. Remark:   1)肉眼可…
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能.从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验. 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于或等于中心像素值,则该像素点的位置被标记为1,否则为0…
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
https://blog.csdn.net/loveliuzz/article/details/73875904…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with ALS-WR (三),这个写了三篇,基本都是写QR分解,然后矩阵进过处理得到U或者M的过程,但是还是没有讲出个所以然来.mahout官网上说其是根据这篇文献得来的Large-scale Parallel Collaborative Filtering for the Netflix Prize,本来我是想…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with ALS-WR这个算法中的那个QR分析,真心是太复杂了.以至于国庆后面三天基本都是在郁闷中过来的,想着自己的矩阵学的是有多差呀...后来算法验证弄懂之后才发觉,尼玛,java太坑爹了吧,矩阵求个逆,有那么复杂么!!! 下面来开始验证:首先应该获得了两个变量分别是Ai和Vi,如果这两个变量不知道是啥东西,可…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算法的并行主要就应该是ParallelALSFactorizationJob这里的并行了,下图是这个Job的大部分操作: 这里分析并行就是看每个job任务是否可以出现多个map或者reduce即可. (1)首先分析前面三个itemRatings,对应的输入是原始文件,如果原始文件很大的话,那么这个任务…
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Array} oldList 原始列表 * @param {Array} newList 新列表 * @param {String} key 键名称 * @return {Object} {children: [], moves: [] } * children 是源列表 根据 新列表返回 移动的新数据,比…
本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一舨的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.最后就是 Spark 的实现算法时候的略的怎么样.希望这篇文章能…
第一章.zookeeper概述 一.zookeeper 简介 zookeeper 是一个开源的分布式应用程序协调服务器,是 Hadoop 的重要组件. zooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务器,是 Google 的Chubby 一个开源的实现,是 Hadoop 和 Hbase 的重要组件.它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护.域名服务.分布式同步.集群管理等.ZooKeeper的目标就是封装复杂易出错的关键服务,将简单易用的接口和性能高…
基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoost import AdaBoost from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def main(): # load data dataset = np…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
@ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模型(mnist) 2.使用Keras搭建cnn训练mnist(train.py),训练部分源码如下: 3.训练结果保存成冻结模型(pb文件)(train.py),训练结果保存为冻结模型的源码如下: 4.python opencv调用冻结模型(cvcallpb.py) 三.LabVIEW OpenCV…
Android精选源码 android实现银行卡匹配信息源码 android实现可以展开查看详情的卡片 下拉刷新,上拉加载,侧滑显示菜单等效果RefreshSwipeRecyclerview android模仿新浪微博菜单弹出界面 android万能的公告栏轮播源码 android 实现类似爱奇艺视频能够拖拽的方案 android自动扫描识别手机号源码 android字体库来显示图片源码 Android优质博客 Android自定义ClockView实现时钟效果 目录- 1.效果图- 2.分析-…
前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv5的相关笔记总结,希望对大家有所帮助. 内容 地址链接 [YOLOv5]LabVIEW+OpenVINO让你的YOLOv5在CPU上飞起来 https://www.cnblogs.com/virobotics/p/16802248.html [YOLOv5]LabVIEW OpenCV dnn快速实…
本来准备看Java容器源码的.但是看到一开始发现Arrays这个类我不是很熟,就顺便把Arrays这个类给看了.Arrays类没有什么架构与难点,但Arrays涉及到的两个排序算法似乎很有意思.那顺便把TimSort算法和双指针快速排序也研究一下吧. 首先强调一下,这是个稳定的排序算法 看过代码之后觉得这个算法没有想象的那么难.逻辑很清晰,整个算法最大的特点就是充分利用数组中已经存在顺序.在归并的过程中有一个 Galloping Mode(翻译过来可以叫 飞奔模式),这是整个排序算法中最不寻常的…
OpenCV3中超像素分割算法SEEDS,SLIC, LSC算法在Contrib包里,需要使用Cmake编译使用.为了方便起见,我将三种算法的源码文件从contrib包里拎了出来,可以直接使用,顺便比较一下算法的效果. 三种算法的源码文件放在我的码云code上:https://gitee.com/rxdj/superPixelSegmentation.git 使用lena图做测试: SEEDS算法: SLIC算法: LSC算法: 祝大家六一儿童节快乐!…
本课主题 Job Stage 划分算法解密 Task 最佳位置算法实现解密 引言 作业调度的划分算法以及 Task 的最佳计算位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一般的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.希望这篇文章能为读者带出以下的启发: 了解 Stage 的具…
上一篇文章介绍了驱动中minstrel_ht速率调整算法,atheros中提供了可选的的两种速率调整算法,分别是ath9k和minstrel,这两个算法分别位于: drivers\net\wireless\ath\ath9k\rc.c···················Ath9k net\mac80211\minstrel_ht.c···························Minstrel 无论从理论分析还是实验结果上看,minstrel都要胜ath9k一筹,为了一个完整性,这里也…
先说几个辅助的宏,因为内核不支持浮点运算,当然还有实现需要,minstrel对很多浮点值做了缩放: /* scaled fraction values */ #define MINSTREL_SCALE 16 #define MINSTREL_FRAC(val, div) (((val) << MINSTREL_SCALE) / div) #define MINSTREL_TRUNC(val) ((val) >> MINSTREL_SCALE) MINSTREL_SCALE是一个放…
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就是这种关系的陈述.其中,L(A|B)表示在B发生的前提下,A发生的概率.L表示要取对数的意思. 关键词解释: 1.p(A),p(B)表示A,B发生的概率,也称先验概率或边缘概率. 2.p(B|A)表示在A发生的前提下,B发生的概率,也称后验概率. 基本公式:p(A|B) = p(AB)/p(B) 图…
本项目将使用python3去识别图片是否为色情图片,会使用到PIL这个图像处理库,并且编写算法来划分图像的皮肤区域 介绍一下PIL: PIL(Python Image Library)是一种免费的图像处理工具包,这个软件包提供了基本的图像处理功能,如:改变图像大小,旋转图像,图像格式转化,色场空间转换(这个我不太懂) 图像增强(就是改善清晰度,突出图像有用信息),直方图处理,插值(利用已知邻近像素点的灰度值来产生未知像素点的灰度值)和滤波等等. 虽然这个软件包要实现复杂的图像处理算法并不太适合,…
本项目将使用python3去识别图片是否为色情图片,会使用到PIL这个图像处理库,并且编写算法来划分图像的皮肤区域 介绍一下PIL: PIL(Python Image Library)是一种免费的图像处理工具包,这个软件包提供了基本的图像处理功能,如:改变图像大小,旋转图像,图像格式转化,色场空间转换(这个我不太懂) 图像增强(就是改善清晰度,突出图像有用信息),直方图处理,插值(利用已知邻近像素点的灰度值来产生未知像素点的灰度值)和滤波等等. 虽然这个软件包要实现复杂的图像处理算法并不太适合,…
前言 本次编写所用的库为于仕祺老师免费提供的人脸检测库.真心好用,识别率和识别速度完全不是Opencv自带的程序能够比拟的.将其配合Opencv的EigenFace算法,基本上可以形成一个小型的毕业设计.(我是学机械的啊喂!!) 准备工作 1.下载在GitHub上的人脸检测库.我不提供百度云,只提供网址:https://github.com/ShiqiYu/libfacedetection. 2.配置好Opencv. 配置人脸检测库 1.新建一个MFC程序. 2.添加Opencv的属性表.(即配…
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 #多准则决策模型-TOPSIS评价方法   ##R语言实现-代码   MCDM=function (decision = NULL, weights = …
/*--------------------------------------------------------------------------------------------------------- 在数据的加解密领域,算法分为对称密钥与非对称密钥两种.对称密钥与非对称密钥由于各自的特点,所应用的领域是不尽相 同的.对称密钥加密算法由于其速度快,一般用于整体数据的加密,而非对称密钥加密算法的安全性能佳,在数字签名领域得到广 泛的应用. TEA算法是由剑桥大学计算机实验室的Davi…
随着手机的快速普及,越来越多的人都在使用手机,而号码的挑选也是用户越来越关心的事情.虽然号码只是个代号而已,但几千年的传统积淀仍给号码赋予其各种含义,至于号码的吉凶也是见仁见智的一种个人喜好问题,或许更多的是人们对美好未来的渴望. 那么手机号码是如何测算吉凶的呢?如何才能挑选到吉利的号码呢?手机号码为什么会影响一个人的运势?其实这就像风水.阳宅会影响运势命运的意义是一样的.虽然这只是一个号码,但是它与您的生活息息相关,也代表您与所有人的沟通桥梁!数字都有其独特的意义存在.也就是「数理属性」与「五…
服务器状态 在QuorumPeer中有定义,这个类是一个线程. LOOKING:寻找Leader状态.处于该状态时,它会认为当前集群中没有Leader,进入选举流程. FOLLOWING: LEADING OBSERVING 选票数据结构 public class Vote { // final private int version; //被选举leader的服务器ID final private long id; //被选举leader的事务ID final private long zxi…
原来指望sha1 这种烂大街的算法 不会出什么幺蛾子 结果<linux C编程实战Code>bt章节的sha1 代码 我在linux和windows下的结果不一样 然后用了哈希工具查看了下 发现结果也不一样. windows和linux自带工具是一致的,但是和<linux C编程实战Code>的代码 无论在windows还是linux下都不一致 这里记录下新得代码 以后备用 (unbuntu wndows7 下执行 计算结果一致) /* * sha1.h * * Descripti…