c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数量最少的路径.我们只需从顶点A出发对图作广度优先遍历,一旦遇到顶点B就终止.由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径.但是这只是一类最简单的图的最短路径问题.有时,对于旅客来说,可能更关心的是节省交通费用:而对于司机来说,里程和速度则是他…
Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵.  图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无向图的边数组是一…
1)Dijkstra算法适用于求图中两节点之间最短路径 2)Dijkstra算法设计比较巧妙的是:在求源节点到终结点自底向上的过程中,源节点到某一节点之间最短路径的确定上(这也是我之前苦于没有解决的地方),其解决方法是通过比较每次循环中源节点到各个节点的权值来找出最小值即最短路径,然后再对各个权值进行修正,再循环...这种求最短路径的方式与图最小生成树算法之Kruskal(克鲁斯卡尔)算法有异曲同工之妙: 3)该算法的时间复杂度度是O(N^2),N是节点的个数. 源码: package com.…
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两顶点最短带权路径的问题. 单源点的最短路径问题: 给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径.迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法.迪杰斯特拉(Dijkstra)算法描述如下: 示意图 算法分析 结合代码实现部分分析这个算法的运行时间.本博客…
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶…
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距…
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.二:算法思想 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0…
上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而从北京到济南有好多条道路,那么最短的那一条就是北京到济南的最短路径,也是我们今天要求的最短路径. 因为最短路径是基于有向图来计算的,所以我们还是使用上几篇关于图的博客中使用的示例.不过我们今天博客中用到的图是有向图,所以我们要讲上篇博客的无向图进行改造,改成有向图,然后在有向图的基础上给出最小生成树…
一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{source_vertex},dist数组初始值为$dist[i] = G.arc[source\_vertex][i],i=0,1,\ldots,n-1$ (2)从顶点集合V-vertex_set中选出$v_j$,满足$dist[j] = Min\left\{dist[i] | v_i∈V-vertex\_…
#include <iostream> #include <iomanip> #include <string> using namespace std; #define INFINITY 65535//无边时的权值 #define MAX_VERTEX_NUM 10//最大顶点数 typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和…