jieba分词】的更多相关文章

在切词的时候使用到jieba分词器,安装如下: 切入到结巴包,执行 python setup.py install 安装后,可以直接在代码中引用: import jieba…
错误现象: 最近在做一个小项目,在Python中使用了jieba分词,感觉非常简洁方便.在Python端进行调试的时候没有任何问题,使用PyInstaller打包成exe文件后,就会报错: 错误原因分析: 参考文献1中的说明,WindowsError:[Error 3]是系统找不到指定文件. 参考文献2中@fxsjy同学的解释,应该是PyInstaller在打包的时候没有将词典文件一起打包导致结巴分词找不到指定的词典文件. 解决方案如下: 1.在python中查询结巴分词的词典文件: 1 2 3…
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3.6.0 ,PanGu分词也是对应Lucene3.6.0版本的.不过好在Lucene.net 已经有了Core 2.0版本(4.8.0 bate版),而PanGu分词,目前有人正在做,貌似已经做完,只是还没有测试~,Lucene升级的改变我都会加粗表示. Lucene.net 4.8.0 https…
python结巴(jieba)分词 一.特点 1.支持三种分词模式: (1)精确模式:试图将句子最精确的切开,适合文本分析. (2)全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解决歧义. (3)搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词.2.支持繁体分词3.支持自定义词典 二.实现 结巴分词的实现原理主要有一下三点:(1)基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG).(2)采用了动态…
一 . pypinyin from pypinyin import lazy_pinyin, TONE, TONE2, TONE3 word = '孙悟空' print(lazy_pinyin(word, style=TONE)) # ['sūn', 'wù', 'kōng'] print(lazy_pinyin(word, style=TONE2)) # ['su1n', 'wu4', 'ko1ng'] print(''.join(lazy_pinyin(word, style=TONE2))…
在使用jieba分词时,发现分词准确度不高.特别是一些专业词汇,比如堡垒机,只能分出堡垒,并不能分出堡垒机.这样导致的问题是很多时候检索并不准确. 经过对比测试,发现nlpir进行分词效果更好.但是nlpir的效率和各种支持又没有jieba那么好,因此采用了一种折中的方案. 就是先用nlpir生成字典,然后使用jieba利用字典进行分词. 首先安装pynlpir.pynlpir的相关说明可以参考https://pynlpir.readthedocs.io/en/latest/index.html…
在处理英文文本时,由于英文文本天生自带分词效果,可以直接通过词之间的空格来分词(但是有些人名.地名等需要考虑作为一个整体,比如New York).而对于中文还有其他类似形式的语言,我们需要根据来特殊处理分词.而在中文分词中最好用的方法可以说是jieba分词.接下来我们来介绍下jieba分词的特点.原理与及简单的应用 1.特点 1)支持三种分词模式 精确模式:试图将句子最精确的切开,适合文本分析 全模式:把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义 搜索引擎模式:在精确模式…
jieba分词中Tokenize的使用,Tokenize主要是用来返回词语在原文的弃之位置,下面贴上代码: #-*- coding:utf-8 -*- from __future__ import unicode_literals import jieba print('-'*40) print(' 默认模式') print('-'*40) result = jieba.tokenize('永和服装饰品有限公司') for tk in result: print "word %s\t\t sta…
结巴分词系统中实现了两种关键词抽取法,一种是TF-IDF关键词抽取算法另一种是TextRank关键词抽取算法,它们都是无监督的算法. 以下是两种算法的使用: #-*- coding:utf-8 -*- from __future__ import unicode_literals import jieba.analyse import jieba s='gStore 是一个基于图的 RDF 数据管理系统(也称为“三元组存储”),维持\ 了原始RDF 数据的图结构.它的数据模型是有标签的有向多边图…
近几天在做自然语言处理,看了一篇论文:面向知识库的中文自然语言问句的语义理解,里面提到了中文的分词,大家都知道对于英文的分词,NLTK有很好的支持,但是NLTK对于中文的分词并不是很好(其实也没有怎么尝试,哈哈哈!) 然后发现了jieba(结巴)分词,发现还是很强大的,还有一个THULAC(http://thulac.thunlp.org/#%E7%BC%96%E8%AF%91%E5%92%8C%E5%AE%89%E8%A3%85),THULAC我还没有试过,这次先来展示一下jieba分词的一些…