首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Mahout 系列之--canopy 算法
】的更多相关文章
Mahout 系列之--canopy 算法
Canopy 算法,流程简单,容易实现,一下是算法 (1)设样本集合为S,确定两个阈值t1和t2,且t1>t2. (2)任取一个样本点p属于S,作为一个Canopy,记为C,从S中移除p. (3)计算S中所有点到p的距离dist (4)若dist<t1,则将相应点归到C,作为弱关联. (5)若dist<t2,则将相应点移出S,作为强关联. (6)重复(2)~(5),直至S为空. 上面的过程可以看出,dist<t2的点属于有且仅有一个簇,t2<dist<t1 的点可能属于…
mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了其比较容易实现并行化. 学习mahout就先从简单的kmeans算法开始学起,就当抛砖引玉了. 1. 首先来简单的回顾一下KMeans算法: (1) 根据事先给定的k值建立初始划分,得到k个Cluster,比如,可以随机选择k个点作为k个Cluster的重心,又或者用其他算法得到的Cluster…
mahout之canopy算法简单理解
canopy是聚类算法的一种实现 它是一种快速,简单,但是不太准确的聚类算法 canopy通过两个人为确定的阈值t1,t2来对数据进行计算,可以达到将一堆混乱的数据分类成有一定规则的n个数据堆 由于canopy算法本身的目的只是将混乱的数据划分成大概的几个类别,所以它是不太准确的 但是通过canopy计算出来的n个类别可以用在kmeans算法中的k值的确定(因为人为无法准确的确定k值到底要多少才合适,而有kmeans算法本身随机产生的话结果可能不是很精确.有关kmeans算法的解释请看点击打开链…
Canopy算法聚类
Canopy一般用在Kmeans之前的粗聚类.考虑到Kmeans在使用上必须要确定K的大小,而往往数据集预先不能确定K的值大小的,这样如果 K取的不合理会带来K均值的误差很大(也就是说K均值对噪声的抗干扰能力较差).总之基于以下三种原因,选择利用Canopy聚类做为Kmeans的前奏 比较科学.也是Canopy的优点. 一.canopy算法的优缺点 Canopy的优点: 1.Kmeans对噪声抗干扰较弱,通过Canopy对比较小的NumPoint的Cluster直接去掉 有利于抗干扰. 2.Ca…
SM系列国密算法(转)
原文地址:科普一下SM系列国密算法(从零开始学区块链 189) 众所周知,为了保障商用密码的安全性,国家商用密码管理办公室制定了一系列密码标准,包括SM1(SCB2).SM2.SM3.SM4.SM7.SM9.祖冲之密码算法(ZUC)那等等.其中SM1.SM4.SM7.祖冲之密码(ZUC)是对称算法:SM2.SM9是非对称算法:SM3是哈希算法.目前,这些算法已广泛应用于各个领域中,期待有一天会有采用国密算法的区块链应用出现.其中SM1.SM7算法不公开,调用该算法时,需要通过加密芯片的接口进行调…
数据挖掘算法之聚类分析(二)canopy算法
canopy是聚类算法的一种实现 它是一种快速,简单,但是不太准确的聚类算法 canopy通过两个人为确定的阈值t1,t2来对数据进行计算,可以达到将一堆混乱的数据分类成有一定规则的n个数据堆 由于canopy算法本身的目的只是将混乱的数据划分成大概的几个类别,所以它是不太准确的 但是通过canopy计算出来的n个类别可以用在kmeans算法中的k值的确定(因为人为无法准确的确定k值到底要多少才合适,而有kmeans算法本身随机产生的话结果可能不是很精确.有关kmeans算法的解释请看点击打开链…
Canopy算法计算聚类的簇数
Kmeans算是是聚类中的经典算法.步骤例如以下: 选择K个点作为初始质心 repeat 将每一个点指派到近期的质心,形成K个簇 又一次计算每一个簇的质心 until 簇不发生变化或达到最大迭代次数 算法中的K须要人为的指定.确定K的做法有非常多,比方多次进行试探.计算误差.得出最好的K.这样须要比較长的时间.我们能够依据Canopy算法来粗略确定K值(能够觉得相等).看一下Canopy算法的过程: (1)设样本集合为S.确定两个阈值t1和t2,且t1>t2. (2)任取一个样本点p.作为一个C…
Mahout系列之----kmeans 聚类
Kmeans是最经典的聚类算法之一,它的优美简单.快速高效被广泛使用. Kmeans算法描述 输入:簇的数目k:包含n个对象的数据集D. 输出:k个簇的集合. 方法: 从D中任意选择k个对象作为初始簇中心: repeat; 根据簇中对象的均值,将每个对象指派到最相似的簇: 更新簇均值,即计算每个簇中对象的均值: 计算准则函数: until准则函数不在发生变化. Kmeans 算法的优缺点: 1)优点 (1)k-平均算法是解决聚类问题的一种经典算法,算法简单.快速. (2)对处理大数据集,该算法是…
mahout运行测试与kmeans算法解析
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
mahout运行测试与数据挖掘算法之聚类分析(一)kmeans算法解析
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…