什么时候需要 shuffle writer 假如我们有个 spark job 依赖关系如下 我们抽象出来其中的rdd和依赖关系: E <-------n------,                    C <--n---D---n-----F--s---,                            A <-------s------ B <--n----`-- G 对应的划分后的RDD结构为: 最终我们得到了整个执行过程: 中间就涉及到shuffle 过程,前一个s…
Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key. Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去.每个Map的输出结果可能包含所有的Redu…
1.官网  http://spark.apache.org/docs/1.6.1/configuration.html#shuffle-behavior Spark数据进行重新分区的操作就叫做shuffle过程 2.介绍 SparkStage划分的时候,将最后一个Stage称为ResultStage(ResultTask),其它Stage叫做ShuffleMapStage(ShuffleMapTask) 3.SparkShuffle实现 基于ShuffleManager来实现,1.6.1版本中存…
一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果. 二.编写本文的目的 本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异. 三.Had…
一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果. 二.编写本文的目的 本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异. 三.Had…
Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key. Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去.每个Map的输出结果可能包含所有的Redu…
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随…
本文参考:http://www.cnblogs.com/cenyuhai/p/3826227.html 在数据流动的整个过程中,最复杂最影响性能的环节,就是 Shuffle 过程,本文将参考大神的博客,根据 Spark-1.5 的代码,再次走读一遍. Shuffle 过程 Spark 中最经典的 Shuffle 过程发生在函数 reduceByKey.groupByKey.这里以 reduceByKey 为例分析.举个例子: val pairs = sc.parallelize(Array((,…
通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp…
一 简介 Shuffle,简而言之,就是对数据进行重新分区,其中会涉及大量的网络io和磁盘io,为什么需要shuffle,以词频统计reduceByKey过程为例, serverA:partition1: (hello, 1), (word, 1)serverB:partition2: (hello, 2) shuffle之后: serverA:partition1: (hello, 1), (hello, 2)serverB:partition2: (word, 1) 最后才能得到结果: (h…