PHP用户输入数据进行过滤】的更多相关文章

1.在表单中,input项,如果用户输入的是英文状态下的双引号或单引号,数据保存后.以后又在后台编辑的时候,<input value=" "这是带引号的值,因为引号导致问题" " ...>因为双引号或单引号的原因,发现数据“丢失”. 2.因此要将输入数据中引号变成html实体. 3.怎么变?答曰:htmlentities //php 5.2.6 $text = trim($text);//去除数据头尾空格 //$text = strip_tags($te…
协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前3列分别指 用户编号user_id.电影编号item_id.用户对电影的打分score 这个文件构建item-用户的倒排表用于构建用户和用户的相似度矩阵,构建用户-item的倒排表用于推荐 ubuntu@ubuntu-2:~/workspace/jupyter_project/recommendat…
摘抄自ThinkPHP /** * 获取变量 支持过滤和默认值 * @param array $data 数据源 * @param string|false $name 字段名 * @param mixed $default 默认值 * @param string|array $filter 过滤函数 * @return mixed */ function input($data = [], $name = '', $default = null, $filter = '') { $name =…
Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法. 基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐. 图片来源 程序中用到的数据都存在MySQL数据库中,计算结果也存在MySQL中的对应用户表中. package com.mahout.helloworlddemo; import java.sql.Connection; import java.sql.DatabaseMetaData; import java.…
package chapter6; //数据输入格式检查 import java.io.IOException; import java.util.InputMismatchException; import java.util.Scanner; /*利用TRY catch代码检查用户输入数据是否是有效的浮点数, * 如果是将其记录,提示用户重新输入*/ public class DataCheck { public static void main(String[] args)throws I…
好早的时候就打算写这篇文章,可是还是參加阿里大数据竞赛的第一季三月份的时候实验就完毕了.硬生生是拖到了十一假期.自己也是醉了... 找工作不是非常顺利,希望写点东西回想一下知识.然后再攒点人品吧,仅仅能如此了. 一.问题背景 二.基于用户的协同过滤算法介绍 三.数据结构和实验过程设计 四.代码 一.问题背景 首先介绍一下问题的背景.如今我有四个月的用户.品牌数据<user,brand>.即用户在这四个月中的某一天购买了某个品牌(当然为了简化算法模型.将购买时间省去,后面再说). 即如今有这四个…
INPUT指令 说明:1. 当程序执行到INPUT指令时,会将控制权交给用户,让用户输入数据.2. 用户输入完字段的数据,会将数据回传给程序中的变量接收.3. 只要执行到INPUT的指令,程序会将每个字段Default为NULL. 反之不需要将每个字段的值都变为NULL的话,需添加(WITHOUT DEFAULTS) 范例(cxrq005): 1.首先在MAIN函数前定义客制变量,用来接收用户数据: #add-point:自定義模組變數-客製(Module Variable) name="glo…
数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012995888/article/details/79077681 相似度计算主要有三个经典算法:余弦定理相似性度量.欧氏距离相似度度量和杰卡德相似性度量.下面分别进行说明: 余弦定理相似性度量       三角形余弦定理公式:,由该公式可知角A越小,bc两边越近.当A为0度时,bc两边完全重合. 当b…
目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? 6. 总结 1. 前言 协同过滤的思想在推荐系统中,可谓是开山鼻祖般的存在.从推荐系统最初至今,几十年的历程中,协同过滤一直都闪烁着迷人的光芒. 要说为何协同过滤这么重要,就得说说它的优点: 模型通用性强,不需要太多的领域知识 工程实现简单,可以方便的应用到产品中,而且效果还不错 协同过滤主要包括…
主要内容: 1.k近邻 2.python实现 1.什么是k近邻(KNN) 在入门-1中,简单地实现了基于用户协同过滤的最近邻算法,所谓最近邻,就是找到距离最近或最相似的用户,将他的物品推荐出来. 而这里,k近邻(K Nearest Neighbor)的意思就是,找出最近或最相似的k个用户,将他们的评分(相似度权重求和)最高的几个物品进行推荐. 2.python实现 代码中有两个数据集, 一个是直接写在的代码中的users: 一个是包含在BX-Book-Ratings.csv.BX-Books.c…