实现方式:该算法先进行取模,然后根据取模值所属范围进行分片 优点:可以自主决定取模后数据的节点分布 缺点:dataNode 划分节点是事先建好的,需要扩展时比较麻烦. 配置示例: <tableRule name="sharding-by-pattern"> <rule> <columns>id</columns> <algorithm>sharding-by-pattern</algorithm> </rul…
实现方式:切分规则根据配置中输入的数值n.此种分片规则将数据分成n份(通常dn节点也为n),从而将数据均匀的分布于各节点上. 优点:这种策略可以很好的分散数据库写的压力.比较适合于单点查询的情景 缺点:不方便扩展:出现了范围查询,就需要MyCAT去合并结果,当数据量偏高的时候,这种跨库查询+合并结果消耗的时间有可能会增加很多,尤其是还出现了order by的时候 配置示例: <tableRule name="mod-long"> <rule> <colum…
实现方式:其思想和范围取模分片一样,由于日期取模会出现数据热点问题,所以先根据日期分组,再根据时间 hash 使得短期数据分布跟均匀. 优点:避免扩容时的数据迁移,可以在一定程度上避免范围分片的热点问题 缺点:要求日期格式尽量精确,不然达不到局部均匀的目的 配置示例: <tableRule name="sharding-by-range-date-hash"> <rule> <columns>create_time</columns> &…
ER模型是实体关系模型,基本元素是实体.关系和属性,Mycat 针对ER关系表的切分规则中,使得有相互依赖的表能够按照某一个规则切分到相同的节点上,避免垮库 Join 关系查询,下面的示例为订单(order)和订单明细(order_detail),明细表依赖于订单,这总业务的切分可以设计出合适的切分规则,比如根据用户ID切分,可以抽象出父子关系的表都可以使用ER分片表.订单表(order)和订单明细表(order_detail)通过 order_id 进行数据切片,保证相同的 order_id…
1.分片枚举 通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下: <tableRule name="sharding-by-intfile"> <rule> <columns>user_id</columns> <algorithm>hash-int</algorithm> </rule&g…
实现方式:该算法与取模范围算法类似,该算法支持数值.符号.字母取模.首先截取长度为 prefixLength 的子串,在对子串中每一个字符的 ASCII 码求和,然后对求和值进行取模运算(sum%patternValue),就可以计算出子串的分片数 优点:可以自主决定取模后数据的节点分布 缺点:dataNode 划分节点是事先建好的,需要扩展时比较麻烦. 配置示例: <tableRule name="rule1"> <rule> <columns>i…
实现方式:该算法先进行范围分片,计算出分片组,组内在取模 优点:综合了范围分片和取模分片的优点,分片组内使用取模可以保证组内的数据分布比较均匀,分片组之间采用范围分片可以兼顾范围分片的特点,事先规划好分片的数量,数据扩容时按照分片组扩容,则原有分片组的数据不需要迁移,分片组内还可以避免热点数据问题. 缺点:在数据范围时固定值(非递增值)时,存在不方便扩展的情况,例如将 dataNode Group size 从 2 扩展为 4 时,需要进行数据迁移才能完成 配置示例: <tableRule na…
实现方式:切分规则根据文件(partition-hash-int.txt)配置的可能的枚举来进行分片,此种分片规则理解为枚举分区,会比较适合于取值固定的场合,比如说省份(固定值) 优点:适用于按照省份或者区县来拆分数据类业务 缺点:其他非枚举情况不适合 配置示例: <tableRule name="sharding-by-intfile"> <rule> <columns>province_id</columns> <algorit…
实现方式:单月内按照小时拆分,最小粒度是小时,一天最多可以有24个分片,最少1个分片,下个月从头开始循环 优点:使数据按照小时来进行分时存储,颗粒度比日期(天)分片要小,适用于数据采集类存储分片 缺点:需要月末手动清理数据 配置示例: <tableRule name="sharding-by-hour"> <rule> <columns>create_time</columns> <algorithm>sharding-by-…
实现方式:按照日期来分片 优点:使数据按照日期来进行分时存储 缺点:由于数据是连续的,所以该方案不能有效的利用资源 配置示例: <tableRule name="sharding-by-date"> <rule> <columns>create_time</columns> <algorithm>sharding-by-date</algorithm> </rule> </tableRule>…