数据挖掘中 决策树算法实现——Bash 博客分类: 数据挖掘 决策树 bash 非递归实现 标准信息熵 数据挖掘决策树bash非递归实现标准信息熵 一.决策树简介: 关于决策树,几乎是数据挖掘分类算法中最先介绍到的. 决策树,顾名思义就是用来做决定的树,一个分支就是一个决策过程. 每个决策过程中涉及一个数据的属性,而且只涉及一个.然后递归地,贪心地直到满足决策条件(即可以得到明确的决策结果). 决策树的实现首先要有一些先验(已经知道结果的历史)数据做训练,通过分析训练数据得到每个属性对结果的影响…
决策树方法的简单调用记录一下 clf=tree.DecisionTreeClassifier() dataMat=[];labelMat=[] dataPath='D:/machinelearning data/machinelearninginaction/Ch05/testSet.txt' fr = open(dataPath) for line in fr.readlines(): # readilnes()将文件内容存在列表里 lineArr = line.strip().split()…
(2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 决策树是对数据进行分类,以此达到预测的目的.决策树方法先根据训练集数据形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练集数据中,重复该过程一直到形成正确…
Microsoft 决策树算法是由 Microsoft SQL Server Analysis Services 提供的分类和回归算法,用于对离散和连续属性进行预测性建模.对于离散属性,该算法根据数据集中输入列之间的关系进行预测.它使用这些列的值(也称之为状态)预测指定为可预测的列的状态.具体地说,该算法标识与可预测列相关的输入列.例如,在预测哪些客户可能购买自行车的方案中,假如在十名年轻客户中有九名购买了自行车,但在十名年龄较大的客户中只有两名购买了自行车,则该算法从中推断出年龄是自行车购买情…
分类是数据挖掘中十分重要的组成部分.分类作为一种无监督学习方式被广泛的使用. 之前关于"数据挖掘中十大经典算法"中,基于ID3核心思想的分类算法C4.5榜上有名.所以不难看出ID3在 数据分类中是多么的重要了. ID3又称为决策树算法,虽然现在广义的决策树算法不止ID3一种,但是由于ID3的重要性,习惯是还是把ID3 和决策树算法等价起来. 另外无监督学习方式我还要多说两句.无监督学习方式包括决策树算法,基于规则的分类,神经网络等.这些分 类方式是初始分类已知,将样本分为训练样本和测试…
决策树是最经常使用的数据挖掘算法,本次分享jacky带你深入浅出,走进决策树的世界 基本概念 决策树(Decision Tree) 它通过对训练样本的学习,并建立分类规则,然后依据分类规则,对新样本数据进行分类预测,属于有监督学习. 优点 1)决策树易于理解和实现 使用者不需要了解很多的背景知识,通过决策树就能够直观形象的了解分类规则: 2)决策树能够同时处理数值型和非数值型数据 在相对短的时间内,能够对大型数据做出可行且效果良好的结果: 逻辑-类比找对象 决策树分类的思想类似于找对象,例如一个…
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,…
之前对决策树的算法原理做了总结,包括决策树算法原理(上)和决策树算法原理(下).今天就从实践的角度来介绍决策树算法,主要是讲解使用scikit-learn来跑决策树算法,结果的可视化以及一些参数调参的关键点. 1. scikit-learn决策树算法类库介绍 scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归.分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor…
预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则指预测标号或类别,比如判断邮件是否为“垃圾邮件”,拼图游戏的图案是否为“猫”. 将回归和分类联系在一起是因为两者都可以通过一个(或更多)值预测另一个(或多个)值.为了能够做出预测,两者都需要从一组输入和输出中学习预测规则.在学习的过程中,需要告诉它们问题及问题的答案.因此,它们都属于所谓的监督学习.…
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…