使用sift特征点进行knn最近邻匹配】的更多相关文章

#include <opencv2/xfeatures2d/nonfree.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <iostream> using namespace cv; using namespace std…
基于SIFT特征的全景图像拼接 分类: image Machine learning2013-07-05 13:33 2554人阅读 评论(3) 收藏 举报 基于SIFT特征的全景图像拼接 分类: 计算机视觉/OpenCV2013-07-04 21:43 91人阅读 评论(0) 收藏 举报 主要分为以下几个步骤: (1) 读入两张图片并分别提取SIFT特征 (2) 利用k-d tree和BBF算法进行特征匹配查找 (3) 利用RANSAC算法筛选匹配点并计算变换矩阵 (3) 图像融合 SIFT算…
1.SIFT概述 SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的.SIFT特征对旋转.尺度缩放.亮度变化等保持不变性,是一种非常稳定的局部特征. 1.1 SIFT算法具的特点 图像的局部特征,对旋转.尺度缩放.亮度变化保持不变,对视角变化.仿射变换.噪声也保持一定程度的稳定性. 独特性好,信息量丰富,适用于海量特征库进行快速.准确的匹配. 多量性,即使是很少几个物体也可以产生大量的SIFT特征 高速…
新手上路,先转载学习tornadomeet的博客:http://www.cnblogs.com/tornadomeet/archive/2012/08/16/2643168.html 特征点检测学习_1(sift算法) sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记.本文比较早的一篇博文opencv源码解析之(3):特征点检查前言1 中有使用opencv自带的sift做了个简单的实验,而这次主要是利用Ro…
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF…
SIFT(Scale-Invariant Feature Transform)是一种具有尺度不变性和光照不变性的特征描述子,也同时是一套特征提取的理论,首次由D. G. Lowe于2004年以<Distinctive Image Features from Scale-Invariant Keypoints[J]>发表于IJCV中.开源算法库OpenCV中进行了实现.扩展和使用. 本文主要依据原始论文和网络上相关专业分析,对SIFT特征提取的算法流程进行简单分析.由于涉及到的知识概念较多,本人…
SIFT特征点相对于ORB计算速度较慢,在没有GPU加速情况下,无法满足视觉里程计的实时性要求,或者无法运行在手机平台上,但是效果更好,精度更高.在应用时可以择优选取,了解其本质原理的动机是为了自己使用时,可以对其进行修改,针对自己的应用场景优化算法. 有足够的时间,可以去看D. Lowe的论文,理解起来更透彻. 1. 用高斯核构建尺度空间 对于构建的高斯金字塔,金字塔每层多张图像合称为一组(Octave),每组有多张(也叫层Interval)图像.通常高斯金字塔最底层为原始图像第0组,octa…
SIFT特征原理与理解 SIFT(Scale-invariant feature transform)尺度不变特征变换 SIFT是一种用来侦测和描述影像中局部性特征的算法,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量. SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位. SIFT算法的特点 SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变…
SIFT特征-尺度不变特征理解 简介 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子.该方法于1999年由David Lowe首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International j…
原文路径:https://www.learnopencv.com/histogram-of-oriented-gradients/ 按语:偶得SIFT特征匹配算法原理介绍,此文章确通俗易懂,分享之! 1.图像尺度空间 在了解图像特征匹配前,需要清楚,两张照片之所以能匹配得上,是因为其特征点的相似度较高. 而寻找图像特征点,我们要先知道一个概念,就是“图像尺度空间”. 平时生活中,用人眼去看一张照片时,随着观测距离的增加,图像会逐渐变得模糊.那么计算机在“看”一张照片时,会从不同的“尺度”去观测照…