标题介绍运行环境了win7 看网上好多keras识别minist 但是一般由于版本问题,无法直接用,,,这里还要特别感谢keras中文文档作者(三当家SCP).教程整的非常好.还有就是最好你在安装anaconda 之前把原来安装过的PY卸载掉,要不然安装mingw的时候会出问题,,,安装就不详细介绍了网上有很多种----大致流程——anaconda-mingw-theano(注意环境变量,系统变量啥的)-keras. 下边附上一个可用程序哈,亲测可用...并附上数据,数据来源于网络,见文章底部,…
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的training和testing即可得知. 源代码与运行截图如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/9 13:23 # @Author : BaoBao # @Mail : baobaotql@163.com #…
由于深度学习近期取得的进展,手写字符识别任务对一些主流语言来说已然不是什么难题了.但是对于一些训练样本较少的非主流语言来说,这仍是一个挑战性问题.为此,本文提出新模型TextCaps,它每类仅用200个训练样本就能达到和当前最佳水平媲美的结果. 由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了.但对于其它语言而言,由于缺乏足够大的.用来训练深度学习模型的标注数据集,这仍然是一个极具挑战性的问题. 尽管 CNN 可以很好地理解图片中的低级和高级特征,但这样做…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…
参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之后找到一篇内容相近博文:手写数字识别---demo 问题解决步骤: 1-去官网下载了数据集: 数据集网址(宝可梦大师课程里也有提到过):http://yann.lecun.com/exdb/mnist/ 2-将下载好的数据集放在一定的位置 将如下代码另存为一个文件load_data.py,后面直接i…
本文转载自:https://blog.csdn.net/u013786021/article/details/78370138 安装软件部分浪费了好长时间才装好.之前一直各种问题,后来卸卸了radinka虚拟机,从头开始才终于弄好. 1,            安装anaconda Anaconda集成了Python.这一部分基本上是完全按照网上来的,网页连接如下 http://blog.csdn.net/xiaerwoailuo/article/details/70054429 1,先从官网上…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的“数量”,0阶张量就是标量(…
本教程创建一个小的神经网络用于手写字符的识别.我们使用MNIST数据集进行训练和测试.这个数据集的训练集包含60000张来自500个人的手写字符的图像,测试集包含10000张独立于训练集的测试图像.你可以参看本教程的Ipython notebook. 本节中,我们使用CNN的模型助手来创建网络并初始化参数.首先import所需要的依赖库. %matplotlib inline from matplotlib import pyplot import numpy as np import os i…
转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/#测试模型 下载数据: # download the mnist to the path '~/.keras/datasets/' if it is the first time to be called# X shape (60,000 28x28), y shape (10,000, )(X_train, y_train), (X_t…
import kerasimport timefrom keras.utils import np_utils start = time.time()(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()SHAPE = 28 * 28CLASSES = 10x_train = x_train.reshape(x_train.shape[0], SHAPE)x_test = x_test.reshape(x_t…